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@%%}5 Porous medium hydrodynamics - standard Richards
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equation

fluxes: diffusion type flow Darcy-Buckingham
equation Buckingham(1907)

continuity equation G=—-K(0)(Vh+Vz),
where
oV 0
=-V.qg-S5 Vz = (o
ot ] ¢ 1

o 0O(h) - water retention curve, and so K(h)
volume: volumetric water content V =6

sink term S: root water uptake, typically S(h)
Feddes et al.(1978)
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I e Constitutive relations

e Mualem(1976) definition for K(h): steep
retention curve even steeper K(h)

Gardn
Brooks & Corey
van Genuchtel
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Figure: Retention curve according to
Gardner(1958), Brooks and Corey(1964) and
van Genuchten(1980).
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Introduction
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>N 2 .
widi oae Richards equation

Richards(1931) equation :
( ) eq term dg(zh) problematic, how to cope if

layered environment?

h ion: i - h i
%% V. K(h)Vh+ OK(h) S solution: solve it for H - total hydraulic

0z head (at the moment functional)

gravity convection

H=h+z —§=—K(H)VH

solution h(X, t) [L] - pressure head 49 OH
proof existence and uniqueness Alt and dh ot V-K(H)VH-5
Luckhaus(1983)

Remark

llt is @ macro-scale approach, solution should be understood in terms of probability.!
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Water flow coupled with heat flow

= —Kn(0)VH — K7V T,

Kie: Hgdro/thermal conductivity for liquid (cross term),

Kie = Ki (hGu 2 $2),

Y dT

Noborio et al.(1996) model

do oh _ OK(h)

S5 =V KVh+ =24V K VT =,
oT -

C-,—sa =V-AVT -V -Cr,TGq + Su
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Introduction

Remark: Noborio et al.(1996) complete model

C? = —K,,,(b’)VH — K[TVT — K/CVC,

Ka: Hydro/osmotic conductivity for liquid (cross term),

Ko =K (h:2 3 +0%=)

o dc
U
do dh OK (h)
- = .Kh h _— ’K T 'Kc _SWa
dh ot v ()V aF 92 + Vv +VT + V Ve
CTS%—::V-AVT—V-CT,TJ/+SH,
9
Rd(c)% —V.0DVc -V -§c—nc.
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— ;
“water flow || ~ coupling

block Agq .« ! block Ags . .

0 0 xx Xx‘ 0 g 0 xx  xx

T T al
" " heat flow

block A, .. .

10 -, 0 xx  xx

Strategy: single-step block-Jacobi method
A A (%) _ 1:7:1
0 Axn/ \Xr by

Easy as pie ;)
1 | solve: AxnXr = by

.
2 | solve: A11Xh = b1 — ApXT
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Richards equation with phase changes

Evaporation V' =6;+6, - given by Sakai et
Freezing [V =0 £0; - given by Dall' Amico et al.(2011)

al.(2011)
00 a0, K
a0, p; 00; 3,_] 5~V (Kin + Kun) Vh+ = oy
+ 2L =V -KyVh+V K7V T+
ot p1 Ot I ¥ I +V - (Ke+Kp)VT - S
6th7 latent heat
o oT o0
oT 80, . 67 L v _ N0 T_
Cpa— Lepi— =V -AVT -V .(GqGT. ot + ot VA0V

ot
S ~ -
latent heat -V- (CIICI + qVCV)T
— VLG, — GST + Sheat,

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation
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Introduction
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s sos QOverall strategy freezing + evaporation

1 | define relations for 6;, 6,, choose approach equilibrium x non-equilibrium
2 | constitutive relations: Kin(6;), Kun(T, h), Kur, A(0), ...

3 | define problem specific boundary conditions (eg. energy balance for evaporation)
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Freezing
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Freezing
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in porous medium unfrozen water can exist below sub-zero temperatures ~» cryosuction
soil freezing reduces the liquid pressure head ~+ water flux towards the freezing front
soil freezing = soil drying

approaches (simillar to equlibrium x kinetic sorption)

o equilibrium (Clausius-Clapeyron theory)
o non-equilibrium (freezing rate)

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation.




Freezing — equilibrium approach
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Wi tei Equilibrium approach

Clausius-Clapeyron equation — see Kurylyk and Watanabe(2013)

Pw T
dp _ Lep dp . [ Lep
— =~ —d= | —d,
dT T dT T
P Tr
h, + Elnl for T < Ty,
T’
h = ‘——/
cryosuction
. for T>Tj,
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Freezing — equilibrium approach
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Use of standard retention curve for 6;!! os /]
/
0 = 0(hy), 03 /
0= 0(h), 02
0; =0, —0,. 01

0[]

0
-1000 -800 -600 -400 -200 0
h [cm]
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Freezing — equilibrium approach

g

R

Wi e volume term (time derivative term)

due to the density differences of ice and water 0w _eq = 0w + <% — ) 0i,
I

Ohy, pi 00;
q — — + —_— —
= Clhw) ot (p/ 1) ot’

. . 00
time derivative term becomes | ———

The term %gt’ can then be expressed as follows (since 6; = 6, — 0)):
00; 00, 06 Ohy, Bh/
ot ~ ot or - (U — Clh

to avoid two unknowns h,, and h; use Clapegron ~> hi(hw, T) and so

oh dh Oh,  dh OT
cmg¢ = <) (G5 + a7 o)

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation.




Freezing — equilibrium approach

dh,

CESK X,
it 08 Term T

Term % is dicontinuous
Discontinous term %, regularization with sin
dhy [ for T<T, function
dT 0 for T> Ty, a
1004
T
99 _ 00w =61 _ C(h ) C(h )ﬂaL_ E
ot ot v dh, Ot sls
dh OT
— )T 5 = o | ; | |
-5.0 -25 0.0 2.5 5.0
dh/ 6hw dh/ oT temperature [°C]
= hy, h = — h)——
(C( ), ) ot~ CaT 5
2
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Freezing — equilibrium approach

Heat transport equation

oT 0; _
o~ Leoi Wi G AVT-V.CaT,

Co ot

Identical approach for 6;

00, dhy \ Ohy, dh OT

B (C(hw) - C(”/)m) 5t ( ’)d_TE
aT 90, dh\ T dh\ oh,,
Cogy — Lepig, = (Cp - LfPiC(hl)ﬁ) 57 | Lepi (C(hw) - C(h/)m) T

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation.




Freezing — equilibrium approach
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GV raze Constitutive relations

water flow equation heat transport equation
hydraulic conductivity: K, — unfrozen, standard « thermal cunductivity for freezing soil

Mualem(1976), according to Lundin(1990)
A= C + C2(9 + F@,’)—

= —Qayy
Kin =107 K, — (G = G)exp (—[Go(0+ FONS) ,
according to Hansson et al.(2004): €2 - empirical coefficients Ci, ..., G5 some estimates can be found
impedance factor [-] in literature, eg. Campbell(1985),
0; F — difference in thermal conductivities ice and
Y= 0,6, water

as expected a lot of parameters :), but all well documented in literature
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Freezing — equilibrium approach
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witin oot Boundary and initial conditions

initial conditions: no special comment needed :)

boundary conditions: use of Dirichlet/Neumann, semi-permeable boundary, etc., no special
comment needed :)

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation
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Freezing — equilibrium approach

Entire model review

coupling term
pi_(pi_q) b b dh (i 1) 9T _
(C(hw)p/ <P/ )dh th)) o Che, AT \p Yoo T

- L
=V. K/hVHW + V- (thq)rg_;_ + KIT) VT7

coupling term

coupling term

dhy OHy oT

dh
— C(hy )) Lepi—5 " <c + C(h)Lsp;®, ’) o=

=V.-AVT - (Gqg/VT.

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation
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Freezing — equilibrium approach
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s Soi Matrix structure and linear algebra strategy

Recommendations
block-Jacobi doesn’t really work here, despite
some popular implementations (Hydrus, etc.)

o 0 0]l w0 9 coupling blocks
o xx o xx Dl o xx .
. .water flow . coupling g
block Agq o i block A,
; ) 2 xx  xx i (pi dhy OH, ~dh (pi aT
: (C(hw)ﬁ— <;71) mc(m)) e+ Sl (;71) e -
0 0 0 xx xx
R e 0 0] =V KnVH, + Ve (K,h@,g%m,)vr
x 0 0 xx  Xx _xx —_—
coupling |  heatflow
! coupling term
block Agq . o |i block A2z . s =
| dhy H = dh\ OT
0 0 wlio % 0 m oo (et = b)) bipr | + (o + (Lo, G) G =
— — =V AVT - GGVT.

contains time derivatives !

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation
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Freezing — equilibrium approach

3
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wid s Matrix structure and linear algebra strategy

Why block-Jacobi doesn’t work?

— ‘ - solution requires short time steps

xx xx 0 - O]ifex x 0 - - - - 0

short time steps - increases dominances of both

“water flow ~ coupling

block Agq .. . block Agp .. .. the main and outer diagonal
lo i - o o i 0 o m well-known fact for non-diagonaly dominant
0o N system Jacobi and Gauss-Seidel doesn’t work
’ " coupling |” " heat flow

: compared to eq. dual permeability model,

block A‘21 X 0|1 block A,zz o
. o ali e
Iy ‘ - of the main diagonal

decreasing time step doesn’t increase dominance

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation
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Freezing — equilibrium approach
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wiiin ot Matrix structure and linear algebra strateqy

Solution
use sparse matrix structure and sparse matrix
solvers
ey —— o] for 1D problems LU decomposition still ok, we
b = m oo o e . succesfully applied Cuthill and McKee(1969)
. .water flow . coupling reodering

block Agq .. .|: block Agy .. .

o system is non-symmetric

0 E 0 xx V[0 0 xx xx
,,,,,,, 00007 o reordering algorithm developed for SPD systems
o o o ) L o consequence: optimal pivot selection is not
coupling . [ heat flow . quaranteed, however, throughout all of out
block Agq . o |i block Ags . . simulations all fine :)
0 0 x|ilp 0 xx .
L ‘ - for 2D problems we use CG for normal equations,

however still uncomplete, major coefficients jumps,
etc.

Mathematical-modeling-of-water-flow-in-porous-medium-with-phase-changes-due freezing-and-evaporation
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Freezing — equilibrium approach

s B Discontinuity in time derivative term
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- if not regularized — solution goes oscilating

_ )
£ -1
dhy  [#  for T<Ty, ER
dT 0 for T > Ty, 44, , , L L
0.10 015 020 025 0.30

distance to cold end [m]

- if over-reqularized — solution oversmoothed

T; 100

¢

E 50 0

sls | E -10
4 3 2 4 o i £ 20

Temperature [°C] 20
- T T T T

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation.
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Freezing — equilibrium approach

s oo Discontinuity in time derivative term

The right amount of reqularization
maintain minimal amount of solution h,, sign changes with

= maximal solution gradients

F -
e i
T 100 ¥
6] J
5
E 5 1+ +
S ' : v ' v r
Sls 0 0 50 100 150 200 250
4 3 -2 4 1 Int_R [m]
Temperature [°C]
Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation.
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- Numerical model was tested on
laboratory data from Jame(1977)
experiment

- model parameters were
measured, only Q impedance
factor optimized

total vol. water content [-]

total vol. water content [-]

0.3+

0.2+

0.1+

0.0+

0.5+

0.4+

0.3

0.2+

0.1+

0.0+

Freezing — equilibrium approach

Model testing

o
e
]
@
[
aQ
£
1)

~104

0.0 0.1 0.2 03 0.0 0.1 0.2 03
distance to cold end [m] distance to cold end [m]
Jame 13 Jame 13
20 B P

9
E 10-
2
©
S o
£
2

~10-

00 01
distance to cold end [m]
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Freezing — nonequilibrium approach
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s sat - Short comment on nonequilibrium approach

Given by Peng(2016) and extended by Blocher(2022)

o0
Ot = Vf,

ﬂ(@/ = 9/’5/)(7—{ = T)1/3 for T< Tf,
VF =
' 0 for T > Ty,

where equilibrium water content 6, ./ is computed from Clausius-Clapeyron

for melting the model is not completely accurate, if T = T¢ ~~ v¢ = 0, if some ice still present it
can’'t melt any further
fixed by Blocher(2022)
ei,eq - 91’
B

VF =

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation
A
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Freezing — nonequilibrium approach

wi st Application — rain on snow

1
1
1 -
L B Brilliant blue
|
X x Temperature
X sensors
X
Water-proof board
Outflow
Tipping

Bucket

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation.
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Freezing — nonequilibrium approach
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X . o .
s sat Application — rain on snow

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation
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Freezing — nonequilibrium approach
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3 . . .
witin soi Application — rain on snow -> goals

to mimic the rain water penetration into a snowpack
to describe the changing liquid water content in snow

to create a prediction system for avalanche warning = still future :)

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation
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Evaporation + evapotranspiration modeling




Evaporation

Governing equation

Following Saito et al.(2006) + Sakat et al.(2011)

o0, 06, OKin
E—F ot —V'(K/h-ﬁ-th)Vh—f—W
+V-(Ki+ K VT =S
- 0T a0, . N
Cor Lot =V -NO)VT -V (GG +4.6)T

— VLG, — GST + Sheat,

C=C(1-6,)+Co +Ch,

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation
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Evaporation
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s sat - Model structure

definition for 6,
constitutive functions

boundary and initial conditions

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation
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Evaporation

vapour content

Defined by Philip and De Vries(1957)
pSV
0, =(0s—0,)H —.
( ) Pl

Relative humidity:

hM, -
H — exp(R—Tg), ifh<0
1, if h>0

and so

0,(h, T) ~

saturated vapour density

_yexp (31.3716 — QL0 —7.925 x 10737T)

psv:’IO T .

liquid water density

pr = 1000—7.370 x 1073(T—3.98)?+3.790 x 10~>( T—3.98)’

29, db,0h db,0T
ot dh ot dT Ot
Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation
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Evaporation
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BRI v renze Fluxes

G = —Kin(Vh+Vz) — K, Vh — KrVT - K7VT,

gr = -XMO)VT + GqT.

We have a problem

We can’t avoid gravity convection term %, how-
to cope with layered medium? Probably some
transition layer

30cm

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation
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Evaporation
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I e Constitutive relations

hydraulic conductivity for liquid K, Kir already defined

hydraulic conductivity for vapour Kus, K,7 (see Nassar and Horton(1989); Nassar and

Horton(1997))
D Mg
Kv ] sviHr
" e RT
' D . dps
Ky = —nH,
t p/?7 dT

thermal conductivity Chung and Horton(1987)
A(0) = A(0) = 2o (6) + BllGill2,
Xo(6) = by + b6, + b3+/6

where by, by, by defined for sand, loam and clay. Empirical relation, overdried clay can reach
negative conductivity!

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation
A
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Evaporation
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witin oot Boundary conditions

For bottom profile standard, for top — energy balance equation
basically Neumann type boundary for both water flow and heat flow model

R,— H— LoE — G =0,

R, — net radiation [W.m ] B
E— Pvs Pva

H — sensible heat flux density .’
[W.m~%]

) _ o ry+ rs — resistance factor
E — evaporation rate flux [m.s~"] P

G — surface heat flux density « pvs — water vapor density at the soil surfa
[W.m~?%] « pva — atmospheric vapor density

meteo data included

T,ir, wind speed, solar radiation, cloudiness, air humidity

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation.
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Soil water content predictions wineyard San Juan, Argentina
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wiin st Vineyard modeling

Calicatas observadas y descripeion

Calicata 1

Este suelo esta compuesto por una capa superior de suelo franco arcillose a franco arcillo limoso (50 crm)
(figura 2), lo que se considera muy bueno para el desarrollo de las raices por su capacidad de contener e
intercambiar nutrientes. A los 10 ¢m de profundidad se observan raices y el 80% se desarrolla entre los 30

y 40 cm (figura 3) por lo que existe un impedimento para el desarrollo de la raiz en profundidad.

1.1

Figura 1. Perfil de suelo tipo serio Belgrano.

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation.
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Soil water content predictions wineyard San Juan, Argentina
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3 R
wes St Data observations - initial conditions

- system of dielectric tensionmeters at different soil
depths (Decagon Devices, Inc.)

. data time step 1 hrs

UZIVATELE

SIGFOX

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation.
A

39/42



Soil water content predictions wineyard San Juan, Argentina
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witin st Boundary conditions value

For developers = Menu
- meteorological data for energy balance equation Make something
obtained from http://yr.no useful with data
« they provide for free API interface from the
+ § "curl -s ’https://api.met.no/weathe..." Meteorological
« for defined longitute + latitude we obtain JSON Institute

data file with 10 days weather forecast, hourly time

step! FOR FREE!! -
Get started

- they provide exactly everything what we need for

evaporation modeling We find weather exciting. That is

AA # developeryr.no )

hd evaporation
A

Mathematical modeling of water flow in
40 / 42
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Soil water content predictions wineyard San Juan, Argentina
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s o System PRAGASYS

PRedicting soil moisture dynamics for efficient
irritGAtion management (smart farming SYStems)

« system of sensors for measuring soil water content + % montGing ——
temperature ©

« predicting the future development of soil water dynamics B D
using yr.no (weather forecast) + drutes.org (soil moisture “© ’

dynamics model)

dry soil level

¥ start irrigation

monitoring data M rediction data
g > p

forecasting for up to 7 days

saturation degree [%]
w
8

.
.

providing the exact amount of irrigation water demand -
to avoid over/under saturation states - optimal conditions 10
for defined crop type

e’y
et

. . . . 50 00 200 250 300
« predicting risks of water shortage for upcoming days - ! (,m;fﬁ,s,
. . . . monitoring start \ prediction start
warning system providing alerts and exact timeline for 0310872022 15:00 0371412022 20:00

optimal irrigation based on weather forecast and crop
water consumption.

Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation.
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Gracias por su atencion...

¢ Preguntas?
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