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Introduction

Porous medium hydrodynamics - standard Richards
equation

continuity equation

∂V
∂t = −∇ · ~ql − S

fluxes: diffusion type flow Darcy-Buckingham
equation Buckingham(1907)

~q = −K(θ)(∇h +∇z),

where

∇z =
(

0
0
1

)
θ(h) - water retention curve, and so K(h)

volume: volumetric water content V = θ

sink term S: root water uptake, typically S(h)
Feddes et al.(1978)
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Introduction

Constitutive relations

Figure: Retention curve according to
Gardner(1958), Brooks and Corey(1964) and
van Genuchten(1980).

Mualem(1976) definition for K (h): steep
retention curve even steeper K (h)

K (h) = Ks


√(

θ(h)−θr
θs −θr

)
θ(h)∫
θr

1
h(θ) dθ

θS∫
θr

1
h(θ) dθ


2

∀ θ ∈ (θr , θS)

1, θ = θS
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Introduction

Richards equation

Richards(1931) equation

dθ
dh
∂h
∂t =∇ · K (h)∇h + ∂K (h)

∂z︸ ︷︷ ︸
gravity convection

− S

solution h(~x , t) [L] - pressure head

proof existence and uniqueness Alt and
Luckhaus(1983)

term ∂K(h)
∂z problematic, how to cope if

layered environment?

solution: solve it for H - total hydraulic
head (at the moment functional)

H = h + z → ~q = −K(H)∇H

dθ
dh
∂H
∂t =∇ · K (H)∇H − S

Remark

!It is a macro-scale approach, solution should be understood in terms of probability.!
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Introduction

Water flow coupled with heat flow

~q = −Klh(θ)∇H − KlT∇T ,

Klt : Hydro/thermal conductivity for liquid (cross term),

Klt = Kl
(
hGw

1
γ0

dγ
dT

)
,

Noborio et al.(1996) model

dθ
dh
∂h
∂t =∇ · K (h)∇h + ∂K (h)

∂z +∇ · Klt∇T − Sw

CTs

∂T
∂t =∇ · λ∇T −∇ · CTl T ~ql + SH
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Introduction

Remark: Noborio et al.(1996) complete model

~q = −Klh(θ)∇H − KlT∇T − Klc∇c,

Kcl : Hydro/osmotic conductivity for liquid (cross term),

Kcl = Kl
(
h 1
γ0

dγ
dc + σ dψπ

dc

)
⇓

dθ
dh
∂h
∂t = ∇ · K (h)∇h + ∂K (h)

∂z + ∇ · Klt∇T + ∇ · Klc∇c − Sw ,

CTs

∂T
∂t =∇ · λ∇T −∇ · CTl T ~ql + SH ,

Rd (c)∂θc
∂t =∇ · θD∇c −∇ · ~qc − r1c.
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Introduction

Remark: matrix structure for Noborio et al.(1996) wa-
ter + heat model

Strategy: single-step block-Jacobi method(
A11 A12
0 A22

)(
~xh
~xT

)
=
(
~b1
~b2

)

Easy as pie :)

1 solve: A22~xT = ~b2

2 solve: A11~xh = ~b1 − A12~xT
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Introduction

Richards equation with phase changes

Freezing V = θl + θi – given by Dall’ Amico et
al.(2011)

∂θl
∂t + ρi

ρl

∂θi
∂t =∇ · Klh∇hl +∇ · KlT∇T +

+ ∂Klh
∂z ,

Cp
∂T
∂t − Lf ρi

∂θi
∂t︸ ︷︷ ︸

latent heat

=∇ · λ∇T −∇ · Cl~qlT .

Evaporation V = θl + θv – given by Sakai et
al.(2011)

∂θl
∂t + ∂θv

∂t =∇ · (Klh + Kvh)∇h + ∂Klh
∂z +

+∇ · (Klt + Kvt)∇T − S

C̄ ∂T
∂t +

latent heat︷ ︸︸ ︷
L0
∂θv
∂t =∇ · λ(θl )∇T−

−∇ · (~qlCl + ~qv Cv )T
−∇ · L0~qv − ClST + Sheat ,
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Introduction

Overall strategy freezing + evaporation

1 define relations for θi , θv , choose approach equilibrium × non-equilibrium

2 constitutive relations: Klh(θi ), Kvh(T , h), KvT , λ(θ), ...

3 define problem specific boundary conditions (eg. energy balance for evaporation)
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Freezing
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Freezing

Define θi

in porous medium unfrozen water can exist below sub-zero temperatures  cryosuction

soil freezing reduces the liquid pressure head  water flux towards the freezing front

soil freezing ≡ soil drying
approaches (simillar to equlibrium × kinetic sorption)

equilibrium (Clausius-Clapeyron theory)
non-equilibrium (freezing rate)
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Freezing – equilibrium approach

Equilibrium approach

Clausius-Clapeyron equation – see Kurylyk and Watanabe(2013)

dp
dT = Lf ρl

T ,  

pw∫
pl

dp
dT d =

T∫
Tf

Lf ρl
T d ,

hl =


hw + Lf

g ln T
Tf︸ ︷︷ ︸

cryosuction

, for T < Tf ,

hw , for T ≥ Tf ,
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Freezing – equilibrium approach

Why hl × hw

Use of standard retention curve for θi !!

θw = θ(hw ),
θl = θ(hl ),
θi = θw − θl .
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Freezing – equilibrium approach

volume term (time derivative term)

due to the density differences of ice and water θw_eq = θw +
(
ρi

ρl
− 1
)
θi ,

time derivative term becomes ∂θw_eq

∂t = C(hw )∂hw

∂t +
(
ρi

ρl
− 1
)
∂θi

∂t ,

The term ∂θi
∂t can then be expressed as follows (since θi = θw − θl ):

∂θi

∂t = ∂θw

∂t −
∂θl

∂t = C(hw )∂hw

∂t − C(hl )
∂hl

∂t
to avoid two unknowns hw and hl use Clapeyron  hl (hw ,T ) and so

C(hl )
∂hl

∂t = C(hl )
( dhl

dhw

∂hw

∂t + dhl

dT
∂T
∂t

)
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Freezing – equilibrium approach

Term dhl
dT

Term dhl
dT is dicontinuous

dhl
dT =

{
Lf
Tg for T < Tf ,

0 for T ≥ Tf ,
,

∂θi
∂t = ∂θw − θl

∂t = C(hw )∂hw
∂t − C(hl )

dhl
dhw

∂hw
∂t −

− C(hl )
dhl
dT

∂T
∂t =

=
(

C(hw )− C(hl )
dhl
dhw

)
∂hw
∂t − C(hl )

dhl
dT

∂T
∂t

Discontinous term dhl
dT , regularization with sin

function

15 / 42
Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation.

N



Freezing – equilibrium approach

Heat transport equation

Cp
∂T
∂t − Lf ρi

∂θi
∂t =∇ · λ∇T −∇ · Cl~qlT ,

Identical approach for θi

∂θi
∂t =

(
C(hw )− C(hl )

dhl
dhw

)
∂hw
∂t − C(hl )

dhl
dT

∂T
∂t

Cp
∂T
∂t − Lf ρi

∂θi
∂t =

(
Cp − Lf ρiC(hl )

dhl
dT

)
∂T
∂t − Lf ρi

(
C(hw )− C(hl )

dhl
dhw

)
∂hw
∂t

16 / 42
Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation.

N



Freezing – equilibrium approach

Constitutive relations

water flow equation
hydraulic conductivity: Klhu – unfrozen, standard
Mualem(1976), according to Lundin(1990)

Klh = 10−Ωαth Klh,u,

according to Hansson et al.(2004): Ω - empirical
impedance factor [-],

αth = θi

θi + θl − θr
.

heat transport equation
thermal cunductivity for freezing soil

λ = C1 + C2(θ + Fθi )−

− (C1 − C4) exp
(
−[C3(θ + Fθi )]C5

)
,

coefficients C1, ...,C5 some estimates can be found
in literature, eg. Campbell(1985),
F – difference in thermal conductivities ice and
water

as expected a lot of parameters :), but all well documented in literature
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Freezing – equilibrium approach

Boundary and initial conditions

initial conditions: no special comment needed :)

boundary conditions: use of Dirichlet/Neumann, semi-permeable boundary, etc., no special
comment needed :)
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Freezing – equilibrium approach

Entire model review

(
C(hw )ρi

ρl
−
(
ρi
ρl
− 1
)

dhl
dhw

C(hl )
)
∂Hw
∂t +

coupling term︷ ︸︸ ︷
C(hl )Φ̄r

dhl
dT

(
ρi
ρl
− 1
)
∂T
∂t =

=∇ · Klh∇Hw + ∇ ·
(

KlhΦ̄r
Lf
gT + KlT

)
∇T︸ ︷︷ ︸

coupling term

,

coupling term︷ ︸︸ ︷(
C(hl )

dhl
dhw

− C(hw )
)

Lf ρi
∂Hw
∂t +

(
Cp + C(hl )Lf ρi Φ̄r

dhl
dT

)
∂T
∂t =

=∇ · λ∇T − Cl~ql∇T .
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Freezing – equilibrium approach

Matrix structure and linear algebra strategy

Recommendations
block-Jacobi doesn’t really work here, despite
some popular implementations (Hydrus, etc.)

coupling blocks

(
C(hw )ρi

ρl
−
(
ρi

ρl
− 1
)

dhl

dhw
C(hl )

)
∂Hw

∂t +

coupling term︷ ︸︸ ︷
C(hl )Φ̄r

dhl

dT

(
ρi

ρl
− 1
)
∂T
∂t =

=∇ · Klh∇Hw + ∇ ·
(

KlhΦ̄r
Lf

gT + KlT

)
∇T︸ ︷︷ ︸

coupling term

,

coupling term︷ ︸︸ ︷(
C(hl )

dhl

dhw
− C(hw )

)
Lf ρi

∂Hw

∂t +
(

Cp + C(hl )Lf ρi Φ̄r
dhl

dT

)
∂T
∂t =

=∇ · λ∇T − Cl~ql∇T .

contains time derivatives !
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Freezing – equilibrium approach

Matrix structure and linear algebra strategy

Why block-Jacobi doesn’t work?
solution requires short time steps

short time steps - increases dominances of both
the main and outer diagonal

well-known fact for non-diagonaly dominant
system Jacobi and Gauss-Seidel doesn’t work

compared to eg. dual permeability model,
decreasing time step doesn’t increase dominance
of the main diagonal
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Freezing – equilibrium approach

Matrix structure and linear algebra strategy

Solution
use sparse matrix structure and sparse matrix
solvers
for 1D problems LU decomposition still ok, we
succesfully applied Cuthill and McKee(1969)
reodering

system is non-symmetric
reordering algorithm developed for SPD systems
consequence: optimal pivot selection is not
guaranteed, however, throughout all of out
simulations all fine :)

for 2D problems we use CG for normal equations,
however still uncomplete, major coefficients jumps,
etc.
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Freezing – equilibrium approach

Discontinuity in time derivative term

dhl
dT =

{
Lf
Tg for T < Tf ,

0 for T ≥ Tf ,

if not regularized – solution goes oscilating

if over-regularized – solution oversmoothed
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Freezing – equilibrium approach

Discontinuity in time derivative term

dhl
dT =

{
Lf
Tg for T < Tf ,

0 for T ≥ Tf ,

The right amount of regularization
maintain minimal amount of solution hw sign changes with
maximal solution gradients
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Freezing – equilibrium approach

Model testing

Numerical model was tested on
laboratory data from Jame(1977)
experiment

model parameters were
measured, only Ω impedance
factor optimized
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Freezing – nonequilibrium approach

Short comment on nonequilibrium approach

Given by Peng(2016) and extended by Blöcher(2022)

∂θi
∂t = vf ,

vf =
{
β(θl − θl,cl )(Tf − T )1/3 for T < Tf ,

0 for T ≥ Tf ,

where equilibrium water content θl,cl is computed from Clausius-Clapeyron
for melting the model is not completely accurate, if T = Tf  vf = 0, if some ice still present it
can’t melt any further

fixed by Blöcher(2022)
vf = θi,eq − θi

β
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Freezing – nonequilibrium approach

Application – rain on snow
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Freezing – nonequilibrium approach

Application – rain on snow
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Freezing – nonequilibrium approach

Application – rain on snow -> goals

to mimic the rain water penetration into a snowpack

to describe the changing liquid water content in snow

to create a prediction system for avalanche warning = still future :)
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Evaporation + evapotranspiration modeling
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Evaporation

Governing equation

Following Saito et al.(2006) + Sakai et al.(2011)

∂θl
∂t + ∂θv

∂t =∇ · (Klh + Kvh)∇h + ∂Klh
∂z

+∇ · (Klt + Kvt)∇T − S

C̄ ∂T
∂t + L0

∂θv
∂t =∇ · λ(θl )∇T −∇ · (~qlCl + ~qv Cv )T

−∇ · L0~qv − ClST + Sheat ,

C̄ = Cs(1− θs) + Clθl + Cvθv
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Evaporation

Model structure

definition for θv

constitutive functions

boundary and initial conditions
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Evaporation

vapour content

Defined by Philip and De Vries(1957)

θv = (θs − θv )Hr
ρsv
ρl
.

Relative humidity:

Hr =
{

exp
(

hMg
RT

)
, if h < 0

1, if h ≥ 0

saturated vapour density

ρsv = 10−3 exp
(
31.3716− 6014.79

T − 7.925× 10−3T
)

T .

liquid water density

ρl = 1000−7.370× 10−3(T−3.98)2+3.790× 10−5(T−3.98)3,

and so

θv (h,T ) ∂θv
∂t = dθv

dh
∂h
∂t + dθv

dT
∂T
∂t .
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Evaporation

Fluxes

~ql = −Klh (∇h +∇z) − Kvh ∇h − KlT∇T − KvT∇T ,

~qT = −λ(θ)∇T + Cl~qlT .

We have a problem

We can’t avoid gravity convection term ∂Klh
∂z , how-

to cope with layered medium? Probably some
transition layer
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Evaporation

Constitutive relations

hydraulic conductivity for liquid Klh, KlT already defined
hydraulic conductivity for vapour Kvh , KvT (see Nassar and Horton(1989); Nassar and
Horton(1997))

Kvh = D
ρw
ρsv

Mg
RT Hr

,
Kvt = D

ρl
ηHr

dρsv

dT
thermal conductivity Chung and Horton(1987)

λ(θ) = λ(θ) = λ0(θ) + β||~ql ||2,

λ0(θ) = b1 + b2θl + b3
√
θl

where b1, b2, b3 defined for sand, loam and clay. Empirical relation, overdried clay can reach
negative conductivity!
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Evaporation

Boundary conditions

For bottom profile standard, for top – energy balance equation
basically Neumann type boundary for both water flow and heat flow model

Rn − H − L0E − G = 0,

Rn – net radiation [W.m−2]

H – sensible heat flux density
[W.m−2]

E – evaporation rate flux [m.s−1]

G – surface heat flux density
[W.m−2]

E = ρvs − ρva
rH + rs

,

rh + rS – resistance factor

ρvs – water vapor density at the soil surface

ρva – atmospheric vapor density

meteo data included

Tair , wind speed, solar radiation, cloudiness, air humidity
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Soil water content predictions wineyard San Juan, Argentina

Application: Finca ECOHUMUS, provincia San Juan,
Argentina
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Soil water content predictions wineyard San Juan, Argentina

Vineyard modeling
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Soil water content predictions wineyard San Juan, Argentina

Data observations - initial conditions

system of dielectric tensionmeters at different soil
depths (Decagon Devices, Inc.)

data time step 1 hrs
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Soil water content predictions wineyard San Juan, Argentina

Boundary conditions value

meteorological data for energy balance equation
obtained from http://yr.no

they provide for free API interface

$ "curl -s ’https://api.met.no/weathe..."

for defined longitute + latitude we obtain JSON
data file with 10 days weather forecast, hourly time
step! FOR FREE!!

they provide exactly everything what we need for
evaporation modeling
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Soil water content predictions wineyard San Juan, Argentina

System PRAGASYS
PRedicting soil moisture dynamics for efficient
irriGAtion management (smart farming SYStems)

system of sensors for measuring soil water content +
temperature

predicting the future development of soil water dynamics
using yr.no (weather forecast) + drutes.org (soil moisture
dynamics model)

forecasting for up to 7 days

providing the exact amount of irrigation water demand -
to avoid over/under saturation states - optimal conditions
for defined crop type

predicting risks of water shortage for upcoming days -
warning system providing alerts and exact timeline for
optimal irrigation based on weather forecast and crop
water consumption.

41 / 42
Mathematical modeling of water flow in porous medium with phase changes due freezing and evaporation.

N



Gracias por su atención...

¿Preguntas?
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