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Improved flux reconstructions in one dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

List of participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

4



Preface

These proceedings contain peer-reviewed papers that are based on the invited lec-
tures, short communications, and posters presented at the 21st seminar Programs
and Algorithms of Numerical Mathematics (PANM) held in Merkur Hotel, Jablonec
nad Nisou, Czech Republic, June 19–24, 2022.

The seminar was organized by the Institute of Mathematics of the Czech Academy
of Sciences under the auspices of EU-MATHS-IN.CZ, Czech Network for Mathemat-
ics in Industry, and with the financial support provided by the RSJ Foundation.
It continued the previous seminars on mathematical software and numerical meth-
ods held (biennially, with only one exception) in Aľsovice, Bratř́ıkov, Janov nad
Nisou, Kořenov, Lázně Libverda, Dolńı Maxov, Prague, and Hejnice in the period
1983–2020. The objective of this series of seminars is to provide a forum for present-
ing and discussing advanced topics in numerical analysis, computer implementation
of numerical algorithms, new approaches to mathematical modeling, and single- or
multi-processor applications of computational methods.

The attendance, 70 participants, was the highest in the history of the seminar.
Most of the participants came from Czech universities and from institutes of the
Czech Academy of Sciences, several also from abroad. We appreciate the traditional
participation of a number of young scientists, PhD students, and also some under-
graduate students. We wish to believe that also those, who took part in the PANM
seminar for the first time, have found the atmosphere of the seminar friendly and
working, and will join the PANM community.
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The conference photo is taken in front of the Merkur Hotel that hosted the semi-
nar. Unexpected situation with the war and Ukrainian refugees forced the organizers
to search for a new location quite shortly before the event. We are grateful that
premises of the hotel allowed PANM21 to happen. We enjoyed Mšeno Reservoir, one
of the attractions in Jablonec nad Nisou, and held on its bank a welcome drink (in
Základna stall) and the traditional evening with a barbecue at Volt Restaurant and
Brewery.

The organizing committee consisted of Jan Chleboun, Pavel Kůs, Jan Papež,
Petr Přikryl, Miro Rozložńık, Karel Segeth, Jakub Š́ıstek, and Tomáš Vejchodský.
Ms Hana B́ılková kindly prepared manuscripts for the electronic version of the book
and for print.

The editors and organizers wish to thank all the participants for their valuable
contributions and, moreover, all the scientists who took a part in reviewing the
submitted manuscripts.

Editors
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J. Chleboun, P. Kůs, J. Papež, M. Rozložńık, K. Segeth, J. Š́ıstek (Eds.)

Institute of Mathematics CAS, Prague 2023

VISUALISATION OF THE ELECTROMAGNETIC VECTOR FIELDS

Stanislav Bartoň

Opole University of Technology
Faculty of Electrical Engineering, Automatic Control and Informatics

Prószkowska 76 Street, 45-758 Opole, Poland
s.barton@po.edu.pl

Abstract: Modern computer algebra software can be used to visualize vector
fields. One of the most used is the Maple program. This program is used
to visualize two and three-dimensional vector fields. The possibilities of plot-
ting direction vectors, lines of force, equipotential curves and the method of
colouring the surface area for two-dimensional cases are shown step by step.
For three-dimensional arrays, these methods are applied to various slices of
three-dimensional space, such as a plane or a cylindrical surface. Finally, the
temporal evolution of the vector fields is illustrated by animations based on
the above methods. In contrast to the publication [2], which deals only with
the problem of colouring vector fields, the present paper makes a completely
comprehensive study of the problem, including the representation of vectors
in a predefined network, the computation of the shape of power lines, and
the animation of time changes, including the animation of the coloured vector
fields.

Keywords: vector field, visualisation, coloring, line of force, animation, Maple

MSC: 65D18, 65L06, 26B15, 34K28, 78A30

1. Introduction

Visualising vector fields is a handy tool that allows an easy and obvious presen-
tation of their basic properties. All the visualisations presented in this article are
made using Maple. Because it is a very complex problem it is solved step by step.
In some parts, the algorithms presented could be shortened, but at the cost of lower
clarity.

The calculation of the magnetic induction vector is quite complex, and the ana-
lytical relationship can only be derived for the elementary shapes of the conductor
- a line segment or a circular arc. For more complex conductor shapes, a numeri-
cal solution is required because a complicated integral must be calculated along the
curve that corresponds to the conductor shape.

DOI: 10.21136/panm.2022.01
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2. Magnetic field inside the stator of a three-phase electric motor

The magnetic induction vector inside the motor is given by the vector sum of the
magnetic inductions that form the individual phase coils of the stator. Suppose we
observe the magnetic induction in the longitudinal plane of symmetry of the stator.
In that case, it is possible to neglect the influence of the parts of the coils that are
wound parallel to the stator bases. The resulting magnetic field is then given by
the sum of the magnetic fields formed by the six straight conductors evenly spaced
around the stator circumference.

To simplify the calculation, assume that the length of the stator is much larger
than its radius, which we choose as the unit of length. We choose a coordinate system
with the origin at the centre of the stator axis, the x axis oriented horizontally, the
y axis oriented vertically and the z axis identical to the stator axis.

The magnetic induction vector ~B of a linear conductor is calculated according to
the Biot-Savart law

~B =
µJ

4π

∫
C

d~w × ~p− ~rw
|~p− ~rw|3

where µ =permeability, J =current flowing through the conductor, d~w =current ele-
ment of the conductor, ~p =position vector of the observation point and ~rw =position
vector of the current element of the conductor d~w.

For a very long wires, L → ∞, in Xi, Yi coordinates, parallel to the z axis,
the observation point ~p = [x, y, 0] and choosing the currents 2µ |Ji|

4π
= 1, ~Bi can be

expressed as:

~Bi(p) =

[
Ji (Yi−y)

(Xi−x)2+(Yi−y)2 ,
Ji (x−Xi)

(Xi−x)2+(Yi−y)2 , 0

]
.

The simplifying condition for the absolute magnitude of the current combined with
the choice of the length unit does not affect the shape of the resulting plots because
they are only multiplicative constants.

The currents flowing through the single-phase coils of a three-phase electric motor
are offset from each other by one-third of a phase. Each coil has two parts parallel
to the stator axis. The first part sends a current in the positive direction of the z-
axis and the second part flows back from the negative direction of the z-axis. Thus,
six alternating currents with a gradual phase shift of one-sixth of the period flow
through the stator,

Ji = sin

(
ω t+

i 2π

3

)
, i = 1..6.

If we choose one period of the alternating current as the time unit, i.e. ω = 2π, this
multiplicative constant will not appear in the derived expressions. This option does
not affect the visualization or animation of the magnetic field.

The conductors forming the coils are located on the coordinates:

X =
[
r,
r

2
,−r

2
,−r,−r

2
,
r

2

]
, Y =

[
0,
r
√

3

2
,
r
√

3

2
, 0,−r

√
3

2
,−r
√

3

2

]
.
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If we restrict the study of the magnetic induction vector to the plane perpendicular
to the stator symmetry axis, z ≡ 0, the resulting magnetic induction vector is

~Bf (x, y, t) =
6∑
i=1

~Bi.

The function that describes the magnetic induction vector depending on the
coordinates x, y and time t we derive in Maple as follows:

> restart; with(plots): with(LinearAlgebra):

> b:=[J[i]*(Y[i]-y)/((X[i]-x)^2+(Y[i]-y)^2),

J[i]*(x-X[i])/((X[i]-x)^2+(Y[i]-y)^2)]:

> X:=[seq(r2*cos(i*Pi/3),i=0..5)]: Y:=[seq(r2*sin(i*Pi/3),i=0..5)]:

> J:=[-seq(sin(2*Pi*t+i*Pi/3),i=0..5)]: Bf:=unapply(sum(b,i=1..6),x,y,t):

3. Mathematical foundations of vector field visualization

An ordinary differential equation deq gives the magnetic induction field line. This
equation has no analytical solution, so it must be solved numerically. For accurate
drawing, it is necessary to control d, the mutual distances of the points on the power
line. We use Newton’s iterative procedure to calculate the parameter step p, which
ensures the desired distance between the last x1, y1 and new end point x, y of the
power line. The function DP gives the correction to the existing parameter value.
xp, yp are the derivatives of x and y according to the parameter p, returned by
the NS numerical procedure solving the deq differential equation. The intermediate
numeric values of the parameter p are contained in the variable q.

> deq:={diff(x(p),p)=Bf(x(p),y(p),t)[1],diff(y(p),p)=Bf(x(p),y(p),t)[2],

x(0)=x0,y(0)=y0}:

> DP:=(x1,y1,x,y,xp,yp,d)->-1/2*(x1^2-2*x1*x+x^2+y1^2-2*y1*y+y^2-d^2)

/(-xp*x1+xp*x-yp*y1+yp*y):

3.1. Initial values of parameters for drawing power lines

The arrows representing the magnetic induction vectors are drawn for the points
stored in the AP list. As an initial point for drawing the power lines, we choose
2 n + 1 point IP0 → IP lying on a line passing through the centre of the stator and
perpendicular to the magnetic induction vector in the stator axis. We stop drawing
the power line when its endpoint reaches the stator circumference, R1 ≥ 1. The
distances of the points on the power line are chosen as d = 0.05. We plot the power
lines for 90-time instants of one revolution of the motor, T. The stator coils are wound
around the stator axis on the radius r2 = 1.25. In reality, the coils are wound on
a smaller radius, but this choice will reduce the differences in the length of the arrows
plotting the magnetic induction vectors near the inner circumference and the centre
of the stator. This will make the magnetic field more homogeneous in the stator.
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> AP:=[seq(seq([i/12,j/12],i=-12..12),j=-12..12)]:

> AP:=map(u->‘if‘(add(w^2,w=u)>1,NULL,u),AP): r2:=1.25: d:=0.05: n:=16:

> IP0:=[seq(i/n,i=-n..n)]: T:=[seq(i/90.,i=0..89)]:

3.2. Auxiliary variables used in the calculation

The meaning of the other variables used is as follows: nt = current value of
the time loop step, Bf00 = vector of magnetic induction in the stator axis, alpha
perpendicular direction to Bf00, t = current value of time, TXY = list containing the
completed power lines for the given time step, ni = current value of the initial value
loop step, x0, y0 = initial values for the numerical solution NS of the differential
equation deq, XY = list of calculated points of the current force line, Q = list of
numerical values of the formal parameter p for the points stored in XY, dq = correction
of q for the relative distance of the power line points or for the location of the power
line end points on the stator circumference, X, Y = current position of the power
line point, W = magnetic induction vectors at AP grid points, GLoF[nt], GLoA[nt]

= graphs for the time t showing the internal stator circuit and the power lines, and
a graph showing the magnetic induction vectors.

3.3. Variables needed for colouring of vector fields

The colouring of the vector field is done in the grid that is stored in the TP variable
as a list of rectangles. First, the magnetic induction vectors BF are calculated for
the rectangle centre points CP. The absolute values AB and the arguments Phi are
calculated for these vectors. For each time step, the maximum and minimum value
of AB are stored in the list MAB and mab. The following procedure does the actual
colouring of the vector field:

> read "TP.sav": CP:=map(u->add(w,w=u)/nops(u),TP): MAB:=[]: mab:=[]:

3.4. Main computational loop
> for nt from 1 to nops(T) do; # THE TIME LOOP

t:=T[nt]: TXY:=[]: Bf00:=evalf(Bf(0.,0.,t)):

alpha:=evalf(argument(Bf00[2]-Bf00[1]*I)):

IP:=map(u->evalf([u*cos(alpha),u*sin(alpha)]),IP0):

for ni from 1 to nops(IP) do: # THE FORWARD, q=-0,02, NODE LOOP

XY:=[IP[ni]]: x0,y0:=XY[-1][]: NS:=dsolve(deq,{x(p),y(p)},numeric);

Q:=[0.]; q:=-0.02: R1:=0.:

while R1<1.0 do: # THE NEW POWER LINE POINT LOOP

dq:=1:

while abs(dq)>1e-6 do; # THE d DISTANCE LOOP

Xp,Yp:=evalf(Bf(XY[-1][],t))[]: X,Y:=map(u->rhs(u),NS(q)[2..3])[]:

dq:=DP(XY[-1][],X,Y,Xp,Yp,d): dq:=dq/sqrt(4+dq^2): q:=q+dq:

end do:

XY:=[XY[],[X,Y]]; Q:=[Q[],q]: q:=2*Q[-1]-Q[-2]: R1:=sqrt(X^2+Y^2):

end do:

q:=Q[-1]: dq:=1:

10



while abs(dq)>1e-6 do; # THE END POINT - PERIMETER LOOP

X,Y:=map(u->rhs(u),NS(q))[2..3][]: Xp,Yp:=evalf(Bf(X,Y,t))[]:

dq:=DP(0,0,X,Y,Xp,Yp,1): dq:=dq/sqrt(4+dq^2): q:=q+dq:

end do:

XY:=[XY[1..-2][],[X,Y]]: TXY:=[TXY[],XY]:

end do:

# for ni from 1 to nops(IP) do: ... end do: # THE BACKWARD, q=0.02, NODE LOOP

# This loop repeats the calculation of the forward loop.

# The only difference is the choice of the initial value of the parameter q.

# Therefore, its listing is omitted

GLoF[nt]:=display({plot([sin(f),cos(f),f=0..2*Pi],color=black,thickness=2),

plot(TXY,color=red)}): W:=evalf(map(u->Bf(u[],t),AP)):

GLoA[nt]:=arrow(zip((u,v)->[u,v/25],AP,W),shape=harpoon):

GLIP[nt]:=plot(IP,style=point,symbol=circle,symbolsize=15,color=blue):

BF:=map(u->evalf(Bf(u[],t)),CP): AB[nt]:=map(u->abs(u[1]+I*u[2]),BF):

MAB:=[MAB[],max(AB[nt])]; mab:=[mab[],min(AB[nt])]:

Phi[nt]:=map(u->argument(u[1]+I*u[2]),BF):

end do:

The resulting magnetic induction vector field is shown in Figure 1.

–1

–0.5

0

0.5

1

–1 –0.5 0 0.5 1
x

y

Figure 1: Electromagnetic induction inside stator, nt = 49
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3.5. Colouring of the vector fields

The colouring of the vector field is done in the grid that is stored in the TP variable
as a list of rectangles. First, the magnetic induction vectors BF are calculated for the
rectangle centre points. The absolute values AB and the arguments Phi are calculated
for these vectors.

To colour the vector field, three functions are needed to mix the fill color of the
individual quadrilaterals from TP by selecting the shade of the red, green and blue
components. The intensity of each colour component is controlled by the functions,
R1, R2 and R3 which depend on the absolute value of the vector AB. The colour ratio
depends on the direction of the vector, Phi.

> R1:=(av,phi)->evalf(1-(sin(phi)+1)*av/2):

> R2:=(av,phi)->evalf(1-(sin(phi+2*Pi/3)+1)*av/2):

> R3:=(av,phi)->evalf(1-(sin(phi+4*Pi/3)+1)*av/2):

Because Min is not equal to zero, it is convenient to choose 0.25 as the lowest
intensity value, when the difference in hue is already noticeable. The upper limit of
the intensity is 1.

To achieve the identical colouring of the vector fields for all time instants it is
necessary to perform a linear transformation LT of the absolute values of the magnetic
induction vector, AB. Therefore, the maximum and minimum values of the list MAB

are saved in the variables Max and Min. This leads to a higher colour contrast in the
resulting image.

> Max:=max(MAB): Min:=min(mab): Yh:=1: Yd:=0.25: k:=(Yh-Yd)/(Max-Min):

> q:=Yh-a*Max: LT:=unapply(k*u+q,u):

Colouring the vector field in Figure 1 for nt = 49 was done by the following
procedure

> PAB:=zip((u,v)->[LT(u),v],AB[49],Phi[49]):

> display(zip((u,v)->polygonplot(u,color=COLOR(RGB,R1(v[]),R2(v[]),R3(v[]))),

TP,PAB),style=patchnogrid,axes=boxed,scaling=constrained);

A reference vector field, see Figure 2, is required to properly evaluate the coloured
vector field. This figure shows how the colour depends on the absolute magnitude of
the vector and its direction. This means that from the system of polygons TP, it is
necessary to remove those whose central point CP has a distance from the origin of
the coordinate system less than 0.25, TP→ TPr, CP→ CPr. The remaining polygons
are then coloured depending on the absolute size and the position vector argument
of the centre point CPr.

> TPr:=zip((u,v)->‘if‘(u[1]^2+u[2]^2>Yd^2,v,NULL),CP,TP):

> CPr:=map(u->‘if‘(u[1]^2+u[2]^2>0.0625,u,NULL),CP):

> pab:=subs(Float(undefined)=0.,map(u->[abs(u[1]+I*u[2]),

argument(u[1]+I*u[2])],CPr)):

> CW:=display(zip((u,v)>polygonplot(u,color=COLOR(RGB,R1(v[]),R2(v[]),R3(v[]))),

TPr,pab),style=patchnogrid,axes=boxed,scaling=constrained):

12



> CWL:=plot([[Yd*cos(f),Yd*sin(f),f=0..2*Pi],[Yh*cos(f),Yh*sin(f),f=0..2*Pi]],

color=[blue,red],thickness=2):

> CWTmin:=textplot([Yd*cos(Pi/4),Yd*sin(Pi/4),convert(round(Min*1000)*.001,

string)],color=blue,align={LEFT,BELOW},font=[COURIER,BOLD,16]):

> CWTmax:=textplot([Yh*cos(Pi/4),Yh*sin(Pi/4),convert(round(Max*1000)*.001,

string)],color=red,align={RIGHT,ABOVE},font=[COURIER,BOLD,16]):

> display({CW,CWL,CWTmin,CWTmax}):

4.290

1.218

Figure 2: Reference vector field

3.6. Animation

The animation is created by displaying the images sequentially. It is possible
to display several images simultaneously at each step of the animation. In the case
of the magnetic induction vector visualisation, this will be three sub-images. The
arrows indicating the magnitude and direction of the magnetic induction vector AA,
the magnetic field lines AL, and the coloured vector field ACF. However, to fit the
vector field, it is necessary to perform a linear transformation of the absolute values
of the magnetic induction vector AB from the interval 〈Min, Max〉 to 〈0.25, 1〉.

> for nt from 1 to nops(T) do:

PAB:=zip((u,v)->[LT(u),v],AB[nt],Phi[nt]):

CF[nt]:=display(zip((u,v)->polygonplot(u,color=COLOR(RGB,R1(v[]),

R2(v[]),R3(v[]))),TP,PAB),style=patchnogrid);

end do:

> ACF:=display([seq(CF[i],i=1..nops(T))],insequence=true):

> AL:=display([seq(GLoF[i],i=1..90)],insequence=true,axes=boxed,

scaling=constrained):

13



> AA:=display([seq(GLoA[i],i=1..90)],insequence=true,axes=boxed,

scaling=constrained):

> TACF:=display({AA,AL,ACF}): TACF;

Creating the final animation and preparing its display is extremely computation-
ally intensive and can take imately twenty minutes. It takes the same amount of time
to free the operating memory after the animation is finished directly in the Maple
environment. Therefore, it is preferable to save the final animation as an animated
file in gif format. It takes less time to create than a Maple animation and can then
be displayed at any time independently of Maple. However, it cannot be controlled
as Maple allows.
> interface(plotdevice=gif,plotoutput="TACF.gif",plotoptions=

‘width=1000,height=1000‘):

> TACF;

4. Conclusion

The procedures presented here for visualising vector fields offer superior and easy
to understand results. However, they must be used judiciously. Firstly, the goal of
the visualisation must be defined, and the whole procedure must be subordinated
to this. This means deciding whether the visualisation is 2D or 3D, whether to use
only arrows to indicate the size and direction of the vectors or whether to use force
line drawing, as well as the decision to use area colouring or animation.

In the case of rendering 3D graphs, it must be remembered that graphs containing
more complex vector fields are difficult to see. Therefore, it is preferable to display
these fields as two-dimensional arrays using several planar slices through the viewed
space.

A fundamental issue for drawing power lines is the appropriate choice of their
starting points. Force lines may be concentrated in one part of the graph if the initial
points are chosen inappropriately, and the resulting display may give a misleading
impression. The second issue is the choice of the correct step length – the distance
between the points forming the power line. Too small a step length increases the
demands on computational capacity. Conversely, too large a step can lead to general
detail distortion and loss of scientific accuracy. Therefore, it is always up to the user
to tune the procedures published here for individual purposes.
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Abstract: In this contribution, we present a solution to the stochastic
Galerkin (SG) matrix equations coming from the Darcy flow problem with
uncertain material coefficients in the separable form. The SG system of equa-
tions is kept in the compressed tensor form and its solution is a very challeng-
ing task. Here, we present the reduced basis (RB) method as a solver which
looks for a low-rank representation of the solution. The construction of the
RB consists of iterative expanding of the basis using Monte Carlo sampling.
We discuss the setting of the sampling procedure and an efficient solution of
multiple similar systems emerging during the sampling procedure using defla-
tion. We conclude with a demonstration of the use of SG solution for forward
uncertainty quantification.

Keywords: stochastic Galerkin method, reduced basis method, Monte Carlo
method, deflated conjugate gradient method
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1. Introduction

This contribution briefly outlines the solution of stationary Darcy flow problem
with uncertain hydraulic conductivity. The solution is obtained using the stochastic
Galerkin (GM) method. A significant part of the contribution is the demonstration
of the usage of SG solution for forward uncertainty quantification.

The work presented here is a continuation of author’s results presented in [1].

2. Stochastic Galerkin method

We start with the problem setting. Let us assume a physical domain D and
random vector Z (on sample space Ω) consisting of M independent standard normal
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random variables. We assume the hydraulic conductivity field as a function of both
points in domain D and random vector Z, more specifically in the form

k (x,Z) =
M∑

m=1

χDm (x)︸ ︷︷ ︸
kDm(x)

exp (σmZm + µm)︸ ︷︷ ︸
kSm(Z)

=
M∑

m=1

kDm (x) kSm (Z) .

I.e. piecewise constant function with the value of constant on each of M subdo-
mains Dm governed by m-th element of random vector Z. The model problem
(steady Darcy flow) than takes the form

−divx (k (x,Z)∇xu (x,Z)) = f (x) ∀x ∈ D,Z ∈ RM ,

u (x,Z) = u0 (x) ∀x ∈ ΓD,Z ∈ RM ,

−k (x,Z) ∂u(x,Z)
∂n(x)

= g (x) ∀x ∈ ΓN ,Z ∈ RM .

For testing purposes, we choose the decomposition into subdomains via thresholding
of the Gaussian random field realisation, see Figure 1.

Figure 1: Illustration of decomposition into subdomains

2.1. Stochastic Galerkin matrix equations

The weak form of the problem takes the form

a (uH , v) =b (v) , ∀v ∈ L2
(
Ω, H1

0,ΓD
(D)
)
,

a (uH , v) =

ˆ

RM

ˆ

D

k (x,Z)∇xuH (x,Z) · ∇xv (x,Z) dx dFZ,

b (v) =

ˆ

RM

ˆ

D

f (x) v (x,Z) dx dFZ −
ˆ

RM

ˆ

ΓN

g (x) v (x,Z) dx dFZ

−
ˆ

RM

ˆ

D

k (x,Z)∇xu0 (x) · ∇xv (x,Z) dx dFZ.
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The homogeneous part of the solution uH lies in L2
(
Ω, H1

0,ΓD
(D)
)

which is isomet-
rically isomorphic with H1

0,ΓD
(D)⊗ L2 (Ω). We choose the test space with the same

tensor structure, i.e. Vh,K := Vh⊗VK , where the discretization of H1
0,ΓD

(D) are finite
elements and the discretization of L2 (Ω) are polynomials

Vh = {ϕ1 (x) , . . . , ϕND
(x)} ⊂ H1

0,ΓD
(D) , VK = {ψ1 (ω) , . . . , ψNS

(ω)} ⊂ L2 (Ω) .

The dimension of Vh,K is NDNS with the basis

ξi,j (x, ω) = ϕi (x)ψj (ω) ∀ i = 1, . . . , ND, j = 1, . . . , NS.

Separable form of input data together with the tensor form of Vh,K allow us to
assemble the matrix in a compressed form. The resulting system of equations takes
the form

Au = b, A =
M∑

m=1

Gm ⊗Km, b =

Mb∑
m=1

gm ⊗ km,

(Km)il =

ˆ

D

kDm (x)∇ϕi (x) · ∇ϕl (x) dx,

(Gm)jn =

ˆ

RM

kSm (Z)ψj (Z)ψn (Z) dFZ.

We simplify the right hand side as a sum over Mb (Mb = M + 2, M terms for
Dirichlet boundary and one for forcing term and Neumann boundary) terms with
vectors gm, km, whose can be assembled in a similar way as Gm, Km.

The system can be viewed as matrix equations, assuming reshaping u intoND×NS

matrix u
M∑

m=1

KmuG
T
m =

Mb∑
m=1

kmg
T
m. (1)

3. Solving the stochastic Galerkin matrix equations

The solution of SG matrix equations (1) is quite a difficult task. We will solve
it using conjugate gradients with Kronecker preconditioner (see [5]). With the full
system, this could be prohibitively expensive (NDNS dofs). Therefore, we reduce the
test space via the reduced basis method.

3.1. Reduced basis method

The reduced basis (RB) method aims at reducing the number of basis functions
while keeping the same approximating properties. In the SG method, it makes sense
to create the reduced basis W of Vh as it is the larger part of the basis and we have
the tools to create a meaningful subspace of it. The resulting SG test space will take
the form of Vh,K ≈ W ⊗ VK , where W is the reduced basis of Vh.
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The reduced basis should fulfill all the conditions needed for the discretized sys-
tem to be well-posed (e.g. discrete inf-sup condition). In the case of our elliptic
problem, we can pick any linearly independent reduced basis W and we obtain a valid
system

M∑
m=1

W TKmWyGT
m =

Mb∑
m=1

W Tkmg
T
m, u ≈ ũ = Wy.

Approximation error of reduced basis W in the context of SG system can be
expressed via residual with respect to the original system

R =
M∑

m=1

KmWyGT
m −

Mb∑
m=1

kmg
T
m. (2)

The most difficult task is to build the reduced basis itself. We do this via Monte
Carlo method.

3.2. Construction of the reduced basis via Monte Carlo sampling

The Monte Carlo (MC) approach to the reduced basis construction is based
on iterative refinement of the reduced basis. We denote by Wl a reduced basis
at iteration l with W0 = ∅. The iterative construction can be summarized in the
following steps:

1. draw NMC samples Z1, . . . , ZNMC
of random vector Z

2. for every sample Zj assemble and solve the reduced system of deterministic
counterpart

W T
l AjWlũj = W T

l bj

3. compute indicators for a sample selection based on the probability density
function (pdf) of Z and the residual of reduced solutions ũj

fZ (Zj) ‖AjWlũj − bj‖2

4. select P (for simplicity, we use P = 1) highest values of identificators and
compute solutions at corresponding samples Zj

Ajuj = bj

5. use the collected solutions to expand the reduced basis Wl and check if the
expanded reduced basis is good enough (e.g. with residual (2))

Computation of the reduced solutions and their residuals at samples Zj is quite
costly. We would like to avoid samples around those already contributing to the
reduced basis, as they will not bring enough of “new information”. We propose
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avoiding already generated samples using sampling (changing Step 1) from a changed
pdf (using Metropolis-Hastings algorithm)

f̃l (Z) ∝ f (Z) min
i=1,...,l

wi (Z) , wi (Z) = 1− exp
(
−‖Z −Xi‖2

Σ−1 /2
)
.

We choose the parameter Σ same as the covariance matrix of Z. Illustration of
altered pdf and comparison of generated samples can be seen in Figure 2. The
benefits of this alternative sampling have diminishing returns when M increases,
this can be seen in Figure 3.

Figure 2: Illustration of altered pdf (left), crude MC samples (middle), samples using
altered pdf (right)

100 101 102 103
10-11

10-9

10-7

10-5

10-3

10-1

Figure 3: Efficiency of reduced basis construction using different NMC , crude sam-
pling and sampling using altered pdf, and comparison with optimal RB and sparse
grid

In Figure 3, we demonstrate the efficiency of the MC approach to the construction
of RB on a series of problems with an increasing number of subdomains/number of
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random variables and µm = 0, σm = 0.3. We compare two variants: M1 - crude MC
sampling with NMC = 1 and A100 - sampling using altered pdf and NMC = 100. We
add a comparison with the optimal (“best”) case of RB constructed from the singular
value decomposition of the computed full solution and point selection using Smolyak
nested sparse grids (see [3]). We measure the quality of RB in the terms of “true”
L2 (Ω, H1 (D)) error of the resulting SG solution compared to pathwise deterministic
solution on the same finite element grid. The “true” error is approximated using
1000 MC samples.

3.3. Deflated conjugate gradients

During the construction of RB, we encounter a solution of many similar systems.
We propose the use of deflated conjugate gradients (DCG) [4] with the current it-
eration of reduced basis Wl as a deflation space to speed up the solution. The
main part of the deflation is to project preconditioned residual using the projector

P = I −Wl

(
W T

l AjWl

)−1
W T

l Aj. This is fairly cheap as the reduced basis Wl has
only a small number of columns.

We show the reduction of the number of iterations when using deflation on a problem
with 5 subdomains and µm = 0, σm = 0.3 using target precision of the reduced
basis 10−6 and precision for the solution of deterministic problems 10−9. We test three
very different preconditioners (additive Schwarz, incomplete Cholesky factorization
with no filling allowed, and diagonal) to demonstrate that the benefit of the use
of DCG is independent of used preconditioner. The comparison of the number of
iterations with and without the use of deflation can be seen in Figure 4. The total
number of saved iterations is over 80% for all tested preconditioners, i.e. the solution
of the series of problems is approximately 5x cheaper.

5 10 15 20 25 30 35 40
100

101

102

103

Figure 4: Comparison of number of iterations needed to solve the deterministic
problems
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4. Use of SG solution - TSX experiment

The main benefit of the SG solution is the result in form of a polynomial surrogate,
i.e. an easy and cheap to evaluate approximation of the original problem. We can use
this to perform extensive forward uncertainty quantification. We demonstrate this
on a simplified tunnel sealing experiment (TSX) [2] modelled as stationary Darcy
flow. We will be interested in the stochastic behaviour of pressure in different parts
of the domain.

The problem domain is D = (0, 100) × (0, 100) \ E (E is the ellipse with cen-
ter [50, 50] and height 2× 1.75 and width 2× 2.1875). The behaviour of pressure in
the tunnel follows

−divx

((∑3
i=1 1Di

(x) 10Zi
)
∇xu (x,Z)

)
= 0 ∀x ∈ D,Z ∈ R3,

u (x,Z) = 3 · 106 ∀x ∈ Γ1,Z ∈ R3,

u (x,Z) = 0 ∀x ∈ Γ2,Z ∈ R3,

where Z1 ∼ N
(
−16, 1

3

)
, Z2 ∼ N

(
−18, 1

3

)
, Z3 ∼ N

(
−21, 1

3

)
, Γ1 is the outer bound-

ary of the rectangle, Γ2 is boundary of cut-out ellipse, and Di (1-yellow, 2−teal,
3−blue) are marked in Figure 5.

Figure 5: Problem geometry

4.1. Results of forward uncertainty quantification

In Figure 5, we can see a marked red line. We are mainly interested in the
behaviour of pressure on this line. Figure 6 shows the comparison of the solution at
mean values with the mean value of the stochastic results supplemented by 25%, 50%
and 75% quantiles. Note the great difference between the solution at mean values
and the mean value of the stochastic solution. The distribution of the pressure
at each point on the selected line can be found in Figure 7. Finally, we include
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Figure 6: Behaviour on vertical line
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Figure 7: Behaviour on vertical line - distribution at each point

2-dimensional distributions of log10 of pressure for pairs of three selected points (black
dots in Figure 8/green dots in Figure 5), see Figure 9. We choose to present log10 of
pressures as the two dimensional distributions of pressures were very hard to read.

4.2. Overview of results

The presented results are mainly academic as we used a fairly simplified model.
But we can draw some general conclusions. First, the behaviour of the mean value
of the stochastic result can be wildly different from the result at the mean values of
parameters. The medians are also different, but only slightly in our model. Second,
it is very important to choose positions of “real-life” measurements carefully as we
can easily pick measurements with overlapping information (as is clearly visible in
Figure 8).
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Figure 8: Behaviour on vertical line - correlation between points

Figure 9: 2-dimensional distributions of log10 of pressure for pairs of selected points
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5. Conclusions

The stochastic Galerkin method can be used to create a very precise polynomial
surrogate model. Its main drawback is the need for the solution of a very large
system of linear equations. In this contribution, we focus on reducing the SG system
of equations using the reduced basis method. We present a sampling approach to
the construction of the reduced basis, which is demonstrated to be very efficient.
Moreover, we demonstrate that the series of similar deterministic systems, we need to
solve during the reduced basis construction, can be solved almost five times cheaper
using the deflated conjugate gradients. In Section 4, we showed a sample of the SG
solution usage for forward uncertainty quantification. This type of analysis can be
helpful in e.g. design of experiments.
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Abstract: The Bayesian inversion is a natural approach to the solution of
inverse problems based on uncertain observed data. The result of such an
inverse problem is the posterior distribution of unknown parameters. This
paper deals with the numerical realization of the Bayesian inversion focusing
on problems governed by computationally expensive forward models such as
numerical solutions of partial differential equations. Samples from the poste-
rior distribution are generated using the Markov chain Monte Carlo (MCMC)
methods accelerated with surrogate models. A surrogate model is understood
as an approximation of the forward model which should be computationally
much cheaper. The target distribution is not fully replaced by its approxima-
tion; therefore, samples from the exact posterior distribution are provided. In
addition, non-intrusive surrogate models can be updated during the sampling
process resulting in an adaptive MCMC method. The use of the surrogate
models significantly reduces the number of evaluations of the forward model
needed for a reliable description of the posterior distribution. Described sam-
pling procedures are implemented in the form of a Python package.
Keywords: Bayesian inversion, delayed-acceptance Metropolis-Hastings, Markov
chain Monte Carlo, surrogate model
MSC: 65C40, 62F15, 35R30

1. Introduction

This contribution focuses on the acceleration of sampling methods in the Bayesian
inversion using surrogate models and describes the resulting Python package created
within author’s PhD studies. The motivation for the development of the package
was the solution of inverse problems from the field of geosciences. The underlying
mathematical models are usually based on computationally expensive numerical so-
lutions of boundary value problems and the observed data are corrupted with noise.
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This contribution provides an analysis of implemented sampling methods. In order
to carry out thorough numerical experiments, a computationally cheap model prob-
lem is considered. Applications to geoengineering problems can be found in previous
publications [2, 4].

Section 2 outlines the principle of the Bayesian inversion that provides the prob-
ability distribution of the unknown parameters (called posterior distribution). Sec-
tion 3 describes methods used to provide samples from the posterior distribution,
focusing on the acceleration using surrogate models. Section 4 describes the Python
package and its usage. Section 5 discusses the efficiency of the sampling process, the
discussion is supported by numerical experiments.

2. Problem setting

Consider a mathematical model G:Rn → Rm. The aim is to find a probabilistic
description of input parameters to the model corresponding to a given vector of noisy
outputs y ∈ Rm.

Further consider a probability space (Ω,FΩ,P) and measurable spaces (Rn,B (Rn)),
(Rm,B (Rm)), n,m ∈ N. We work with three (multivariate) random variables:
unknown parameters U : Ω → Rn, observed data Y : Ω → Rm, observational noise
Z: Ω → Rm. Their relationship is described by the noise model Y = G (U) + Z.
Therefore, y is a realization of Y .

The probability distribution of U is called the prior distribution, fU denotes its
probability density function (pdf). It expresses the information about the unknown
input parameters known from experience (i.e. without the knowledge of y). Simi-
larly, fZ denotes the pdf of the noise distribution (i.e. probability distribution of Z).
Now, the aim can be retold in the Bayesian way: We would like to obtain the condi-
tional distribution of U given Y = y, called posterior distribution. We also say that
we refine the prior distribution using the observed data y.

According to the Bayes’ theorem, the pdf of the posterior distribution is given by
the formula

fU |Y (u|y) =
fZ (y −G (u)) fU (u)´

Rn fZ (y −G (v)) fU (v) dv
∝ fZ (y −G (u))︸ ︷︷ ︸

likelihood

fU (u)︸ ︷︷ ︸
prior

,

where ∝ denotes proportionality, fZ (y −G (u)) (as a function of u) is called the data
likelihood.

The objective is to generate samples from the posterior distribution, see Section 3.
Figure 1 illustrates the principle of the Bayesian inversion on a sample observational
operator G:R2 → R. This model problem will be also considered in numerical
experiments in Section 5.1.

3. Markov chain Monte Carlo (MCMC) methods for posterior sampling

MCMC methods serve to generate samples from a target probability distribution.
Here, the target distribution is given by the posterior pdf which is understood as
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(d) Posterior distribution

Figure 1: Illustration of Bayesian inversion

a function of u (y is fixed). The target pdf f can be written as

f (u) ∝ fZ (y −G (u)) fU (u) ; (1)

∝ denotes equality up to a multiplicative constant. We consider the Metropolis-
Hastings (MH) algorithm and its modification called the delayed-acceptance MH
(DAMH) algorithm, see [6, 7]. In recent years, the DAMH algorithm has been
widely used and developed, see e.g. [8, 10].

The MH algorithm (Alg. 1) assumes a symmetric proposal distribution such as
the Gaussian random walk. In that case,

q (·|u) is the pdf of Nn (u;C), (2)

u ∈ Rn denotes the mean vector and C ∈ Rn×n the covariance matrix.
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Algorithm 1 Metropolis-Hastings (MH) algorithm
Choose an initial sample u(0) ∈ Rn such that fZ

(
y −G

(
u(0)
))
fU
(
u(0)
)
> 0.

For k = 0, 1, ...

1. Propose a sample v from the proposal distribution with pdf q
(
·|u(k)

)
.

2. Accept v with probability a
(
u(k), v

)
= min

{
1, fZ(y−G(v))fU (v)

fZ(y−G(u(k)))fU(u(k))

}
(i.e., set

u(k+1) = v). Otherwise reject v (i.e., set u(k+1) = u(k)).

It can be noticed that the observational operator G is evaluated for each proposed
sample v. Therefore, if G is computationally expensive, the MH algorithm is not
suitable. Higher sampling efficiency can be achieved by the DAMH algorithm in
combination with the use of a surrogate model G̃ that approximates G. Evaluations
of a suitable surrogate model should be much cheaper compared to the evaluations
of G. The DAMH algorithm, as introduced in [6], works with the true posterior and
also with its approximation. The key property of this algorithm is that it provides
samples from the true posterior, the approximation serves only for the acceleration.

Using a surrogate model, the approximation of the posterior pdf can be obtained
simply as

f̃ (u) ∝ fZ

(
y − G̃ (u)

)
fU (u) (3)

The application of the DAMH algorithm to the target distribution in the form of (1)
and its approximation (3) leads to Alg. 2.

Algorithm 2 DAMH algorithm using a surrogate model; symmetric proposal pdf
Choose an initial sample u(0) ∈ Rn such that fZ

(
y −G

(
u(0)
))
fU
(
u(0)
)
> 0.

For k = 0, 1, ...

1. Propose a sample v from the proposal distribution with pdf q
(
·|u(k)

)
.

2. Pre-accept v with probability ã
(
u(k), v

)
= min

{
1,

fZ(y−G̃(v))fU (v)

fZ(y−G̃(u(k)))fU(u(k))

}
. Oth-

erwise reject v.

3. If v is pre-accepted, accept it with probability a
(
u(k), v

)
=

min

{
1,

fZ(y−G̃(u(k)))fZ(y−G(v))

fZ(y−G̃(v))fZ(y−G(u(k)))

}
. Otherwise reject v.

Further improvement can be achieved by increasing the quality of the surrogate
model. During the DAMH algorithm, new snapshots

(
u(k), G

(
u(k)
))

are obtained and
it is beneficial to use them for the update of the surrogate model G̃. The resulting
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DAMH algorithm with surrogate model updates (DAMH-SMU) can be written as
Alg. 2 with an added step:

4. Optionally, use
(
u(k), G

(
u(k)
))

to update the surrogate model G̃.

After G̃ is modified, it is necessary to recalculate G̃
(
u(k)
)
; however, the computation

cost is assumed to be negligible.
This natural modification of Alg. 2 utilizes all evaluations of G known so far. To

implement the surrogate model updates, non-intrusive surrogate models should be
used. As shown in numerical experiments in Section 5.1, suitable surrogate models
can be constructed for example using a projection to a polynomial basis or using
radial basis functions.

MCMC methods are sequential in principle. Therefore, typical utilization of
computational resources consists in running several independent sampling processes
in parallel. The DAMH-SMU algorithm allows additional acceleration - the parallel
processes can share one surrogate model constructed using snapshots obtained by
all of the sampling processes. Benefits of this approach are supported by numerical
experiments, see Section 5.1.

4. Implementation

The sampling methods described in Section 3 are included in the author’s Python
library for the numerical realization of the Bayesian inversion (available at [5]). The
implementation utilizes MPI processes via the mpi4py library, [9]. For the scheme
of the parallel processes see Fig. 2. Several sampling processes (SAMPLER 1 to N)
are running in parallel. These processes share one surrogate model which is refined
using data from all of these processes. The COLLECTOR process serves for the
construction of the surrogate model and for its distribution to the SAMPLERs. The
SAMPLERs also share a pool of SOLVERs, i.e., processes that evaluate the forward
model G. SOLVERs are typically implemented via a linked numerical library. The
SOLVERS POOL assigns the computations required by SAMPLERs to individual
SOLVERs. The evaluations of G typically form the majority of the computational
time; therefore, for a good utilization of computational resources, the number of
SOLVERs is typically lower than the number of SAMPLERs.

The typical sampling process can be divided into several phases:

1. The first phase is the basic MH algorithm, obtained snapshots are used for the
construction of a shared surrogate model.

2. The main phase is the DAMH-SMU algorithm during which the surrogate
model is updated and used for the acceleration of the sampling process.

3. When the surrogate model is accurate enough, its updates can stop, i.e., the
DAMH algorithm is used.

4. Post-processing of obtained samples. This includes the computation of mo-
ments, visualization, autocorrelation analysis, etc.
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Figure 2: MPI processes

The sampling processes use the Gaussian random walk proposal distributionNn(u,C).
For each sampling phase, it is possible to specify the covariance matrix C, surrogate
model type, and a stopping criterion. The stopping criterion can be a pre-specified
length of the produced chain, number of G evaluations, or reaching the maximum
sampling time. For the surrogate model construction, two methods are implemented:
projection to a basis of Hermite polynomials and interpolation using radial basis func-
tions (RBF); for details see [4]. In the case of the polynomial surrogate model, the
polynomial degree is chosen based on the number of currently available snapshots
up to a pre-specified maximal degree. In the case of the RBF model, it is possible
to specify the RBF type (e.g. polyharmonic, Gaussian, etc.) and to set a limit on
the number of snapshots used for the construction of the surrogate model.

5. Sampling efficiency

MCMC methods are usually understood as methods for the construction of an
ergodic Markov chain invariant with respect to (wrt) a target probability distribution.
MH and DAMH algorithms are valid (invariant and ergodic) under mild assumptions
on supports of q, f , f̃ .
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In the case of the basic MH algorithm, it can be shown that obtained samples
form a realization of a Markov chain invariant wrt the posterior distribution. The use
of the Gaussian random walk proposal (2) also implies the ergodicity of the Markov
chain. For details see e.g. [11].

The DAMH algorithm can be understood as a specific version of the MH algo-
rithm with a modified proposal distribution that includes the pre-acceptance step
based on the surrogate model. For the explanation see [6]. Therefore, the resulting
Markov chain is also invariant wrt the posterior distribution. Under the additional
condition

supp f̃ ⊃ supp f,
the Markov chain ergodic, for a detailed explanation see [4].

The DAMH-SMU algorithm was obtained by a small modification of the DAMH
algorithm; however, there is a significant difference in ensuring ergodicity. Since G̃
changes, the proposal distribution also changes and the algorithm becomes an adap-
tive MCMC method. Several possibilities of ensuring the ergodicity of this type of
adaptive MCMC methods are offered by [1, 12]. In situations when it is not possible
to prove the ergodicity of the DAMH-SMU algorithm, the validity of the sampling
process can be ensured simply by stopping the adaptations at some point. The whole
DAMH-SMU algorithm is then understood as a means to find suitable parameters
of proposal distribution for the next phase (DAMH algorithm).

Besides the theoretical properties, we should also deal with practical aspects that
affect the sampling process efficiency. Specifically, the choice of q has a major impact
on sampling efficiency. Too low variance of q (·|u) causes high autocorrelation of the
resulting Markov chain; therefore, too many samples are required to explore the
parameter space. Conversely, if q (·|u) has a high variance, large amount of proposed
samples are likely to be rejected, which also results in a high autocorrelation.

There are various approaches attempting to find an “optimal” proposal distribu-
tion. Theoretical and experimental results are based on studying the impact of the
average acceptance rate

α = E [a (u, v)] =

ˆ
u∈U

ˆ
v∈U

a (u, v) dQ (u, v) dµ (u)

on the integrated autocorrelation time (IAT) τ = 1 + 2
∞∑
i=1

ρk (ρk is the auto-

correlation at lag k). In practice, these values are estimated as a part the the
post-processing phase. The average acceptance rate requires monitoring the ratio
of accepted/rejected samples. A reliable empirical estimation of IAT is difficult in
practice since it requires Markov chains many times longer than the value of IAT.

When an estimation τ̂ of IAT is available, the sampling efficiency can be assessed
using the efficiency criterion proposed in [3] – cost per almost uncorrelated sample
(CpUS). In the case of the DAMH algorithm,

CpUS =

(
Nacc +Nrej

N
+ costG̃

)
τ, (4)
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N is the length of the generated Markov chain, Nacc (Nrej) is the number of accepted
(rejected) samples, and costG̃ is the ratio of the average cost of G̃ evaluations to the
average cost of G evaluations. In the case of the basic MH algorithm, CpUS is given
by IAT (by definition), i.e. CpUS = τ . This is in accordance with formula (4), since
N = Nacc +Nrej and costG̃ = 0 (G̃ is not used).

5.1. Numerical experiments
The first set of numerical experiments examines the efficiency of MH and DAMH

algorithms depending on the variance of the proposal distribution. These experi-
ments can also be used to compare these algorithms in terms of the optimal CpUS.

The proposal pdf q (·|u) is the pdf of

Nn (u;C) = N2

(
u;σ2I

)
where σ ∈ {0.4, 0.6, . . . , 5.0}. For each σ, 20 Markov chains of sufficient length (in
order to obtain a good estimation of IAT) were generated in parallel using MH and
DAMH algorithms. The following methods were considered:

“MH” Basic MH algorithm, CpUS ≈ τ̂ .

“exact” DAMH algorithm with a hypothetical ideal surrogate model. This does
not require any simulation, data obtained using the MH algorithm are
recycled. The surrogate model is assumed to be exact; therefore, there
are no rejections and CpUS estimation is obtained as

CpUS ≈
(
Nacc

N
+ costG̃

)
τ̂ .

“constant” DAMH algorithm with a non-informative surrogate model, G̃ (u) = 0 for
each u. CpUS is calculated using (4), τ is replaced by its estimation τ̂ .

Table 1 shows obtained data required for the calculation of CpUS for chosen values
of σ. In this model problem, the evaluations of G are very cheap; therefore, for
illustrative purposes, the value of costG̃ is chosen artificially. Figure 3a shows the
dependence of CpUS on σ for costG̃ = 0.3. For each algorithm, the optimal CpUS
is marked. However, in typical applications, the value of costG̃ is usually much
lower. Figure 3b shows the corresponding results recalculated for costG̃ = 0.001. As
indicated by these results, the DAMH algorithm requires higher values of σ than the
MH algorithm for higher efficiency. Furthermore, the optimal value of σ increases
with decreasing value of costG̃.
In addition, Figure 3b contains results obtained for more realistic surrogate models:

“poly” DAMH algorithm with a polynomial surrogate model.

“rbf” DAMH algorithm with a RBF surrogate model.
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MH, DAMH “exact” DAMH “constant”
σ 0.4 1.0 2.0 3.0 4.0 5.0 0.4 1.0 2.0 3.0 4.0 5.0

Nacc
N 0.61 0.38 0.20 0.12 0.07 0.05 0.56 0.32 0.16 0.09 0.06 0.04

Nrej
N 1− Nacc

N 0.31 0.36 0.25 0.16 0.11 0.08
τ̂ 91.0 23.6 16.7 21.6 31.3 45.2 100.8 33.9 23.1 29.3 40.9 57.8

Table 1: Data required for the calculation of CpUS
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(a) Non-negligible surrogate model cost
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(b) Computationally cheap surrogate model

Figure 3: Comparison of MH and DAMH algorithms in terms of CpUS

Naturally, the values of CpUS cannot be lower than with the “exact” surrogate model.
The lowest achieved CpUS is approximately 16 for MH, 2.5 for “poly” and “rbf”,
and 2.3 for “exact”.

In the previous experiment, standard DAMH algorithm without surrogate model
updates was considered. The second numerical experiment is designed to show the
benefits of surrogate model updates during the sampling process. This will be shown
through monitoring the amount of rejected samples in the DAMH algorithm. These
samples require the evaluation of the (usually computationally expensive) observa-
tional operator G but they are rejected afterwards; therefore, the number of rejected
samples should be as low as possible. In the hypothetical ideal case of the exact
surrogate model, there would be no rejected samples.

For this purpose, the RFB surrogate model is used and the sampling process is
divided into several phases:

MH (100)→ DAMH (long)
5 times︷ ︸︸ ︷

→ DAMH-SMU (100)→ DAMH (long)

The initial phase is the basic MH algorithm with stopping criterion set to 100 eval-
uations of G. Then, there are five DAMH-SMU phases, all of them terminated after

33



1 2 3 4 5 6
DAMH-SMU sampling process phase

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

ra
tio

 o
f r

ej
ec

te
d 

sa
m

pl
es

rbf
poly

Figure 4: Benefits of surrogate model updates

100 evaluations of G. After each of the phases, there is a long DAMH phase. These
additional DAMH phases serve only for monitoring the surrogate model quality, they
do not affect the DAMH-SMU phases in any way. Figure 4 shows the ratio of rejected
samples (to the number of all samples) for each DAMH phase corresponding to sur-
rogate models constructed from increasing numbers of snapshots (from 100 to 600).
The figure shows the intended behavior – with increasing quality of the surrogate
model, the ratio of rejected samples decreases.

6. Conclusions

The contribution focused on MCMC methods providing samples from the exact
posterior distribution. Such methods require many evaluations of the observational
operator. It was shown that the use of surrogate models and the DAMH algorithm
can spare a significant number of G evaluations compared to the basic MH algorithm.
Also, it was shown that the surrogate model can be updated during the sampling
process, leading to a further increase in the efficiency of the sampling process.

An advantage of the presented Python framework is that the implemented meth-
ods have general use, the forward model G can be a “black box”. The only require-
ments for the use of this Python package are the specification of the prior distribution
and the observational noise, and the availability of a solver that evaluates the obser-
vational operator G.
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Abstract: Perturbed parameters are considered in a hypoplastic model of
granular materials. For fixed parameters, the model response to a periodic
stress loading and unloading converges to a limit state of strain. The focus of
this contribution is the assessment of the change in the limit strain caused by
varying model parameters.
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1. Introduction

In this contribution, the hypoplastic model [6] of granular materials is considered
together with uncertain input parameters. The focus is concentrated on the influence
the uncertainty in inputs has on the limit state of ratchetting. The limit state is,
of course, determined only approximately through a numerical modeling of a finite
number of cyclic loading and unloading steps.

Let us imagine a cohesionless granular material such as soil, sand, or gravel. Its
behavior is different from common solid materials and cannot be modeled by com-
mon models widely used in elasticity and plasticity. Various models of hypoplastic
granular materials have been proposed, see, for instance, a micromechanical ap-
proach [1, 3], a macromechanical approach [4], or a survey in [2] or [6]. As already
indicated, we will use the model presented in the paper [6] that is a continuation
of [2], and both follow the hypoplastic concept proposed in [5].

Unlike in common elasticity models where a body is loaded by forces that, through
a strain, produce a stress, loading by stress is considered and strain inferred in hy-
poplastic models. An effect called ratchetting is then observed. It can be briefly
characterized as a behavior in which deformation accumulates due to cyclic mechan-
ical stress. As a consequence, the hypoplastic material is made denser and more
compacted than the material before cycles of loading and unloading. The material
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in an initial state is looser and has a greater void ratio (imagine a pile of fluffy soil
under a cyclic loading). The material response to the cyclic loading is more and
more stable. Finally, a limit state both in the strain and the void ratio is reached. In
the limit, the void ratio takes its minimum that is given by the parameter ed in our
model, see (9) in Section 2. Our contribution is concerned with an arising question:
How strongly is the limit strain influenced by the uncertainty in parameters that
enter the model?

2. The hypoplastic model

The model whose response will be investigated is introduced in this section. We
follow [6] but make the presentation significantly condensed. The reader can also get
an idea of the model in [2] where, however, the exposition is not as straightforward
as in [6].

The model [6] in a general form is given by

σ̇(t) = c1(t)
(
L(σ(t)) : ε̇+ f(t)N(σ(t))‖ε̇(t)‖

)
, (1)

where σ is the stress tensor, ε is the strain tensor, c1(t) and f(t) are “time” de-
pendent quantities, see (6) and (9), and L(σ(t)) and N(σ(t)) are tensors, see the
next paragraph. The canonical scalar product is denoted by : and the dot stands
for the derivative with respect to t, a time-like parameter on which the evolution
of the loading process depends. Since a stress-controlled loading is considered, the
stress σ(t) is given and the strain ε(t) is to be determined.

Let us particularize (1) in terms of matrices and scalar functions. The loading
is specified as proportional to a given 3× 3 symmetric matrix S = (sij)i,j=1,2,3, that
is, σ(t) = σ(t)S, where σ : [b, b + T ] → (0,∞) is a given monotone scalar function
defined on an interval [b, b+T ] of the length T . The proportional loading or unloading
is determined by the increasing or decreasing function σ, respectively.

Let us consider matrices A,B ∈ R3×3, and introduce

〈A,B〉 = A : B = tr(BTA) =
∑

1≤j,k≤3

ajkbjk,

the Frobenius norm
‖A‖ = 〈A,A〉1/2

as well as the identity matrix I ∈ R3×3.
Then the detailed form of the model (1) is as follows:

σ̇(t)S = c1(t)σ(t)

(
a2〈S, I〉ε̇(t)+

1

〈S, I〉
〈S, ε̇(t)〉S+af(t)‖ε̇(t)‖

(
2S− 1

3
〈S, I〉I

))
, (2)

where a > 0 is a real parameter and f is a positive t-dependent function. Both
quantities will be considered uncertain.
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Let us assume σ̇(t) 6= 0 and define a matrix-valued function X as well as a con-
stant matrix A

X(t) = c1(t)
σ(t)

σ̇(t)
ε̇(t), A =

Q

a2 + ‖Q‖2
, (3)

where

Q =
S

〈S, I〉
.

After some manipulation, see [6], the model (2) takes the following form

X(t) = A + af(t)‖X‖B for σ̇(t) > 0, (4)

X(t) = A− af(t)‖X‖B for σ̇(t) < 0, (5)

where

B =

(
2 +

1

3a2

)
A− 1

3a2
I, f(t) = F (e(t)) = f0

(
e(t)− ed
ec − ed

)α
, (6)

e(t) is the void ratio and α, ec > ed are positive constants that will be considered
uncertain. Instead of f0, a fixed value of 1 is used in [6]. Since we wish to perturb
this value too, we introduce a parameter f0 and consider it uncertain.

The mass balance equation implies a differential equation for the void ratio e(t),
namely,

ė(t) = (1 + e(t))〈ε̇(t), I〉. (7)

Recall X(t) = c1(t)
σ(t)

σ̇(t)
ε̇(t), then, with the help of (7)

〈X(t), I〉 = c1(t)
σ(t)

σ̇(t)
〈ε̇(t), I〉 = c1(t)

σ(t)

σ̇(t)

ė(t)

1 + e(t)
. (8)

Now, it is the right time to reveal that the function c1 is also e dependent. Indeed,

c1(t) = −c̄(e(t)− ed)−β, (9)

where the constants c̄, β, and ed will be considered uncertain but constrained by
0 < c̄, 1 ≤ β, and ed ∈ (0, 1). The meaning of (9) is that the material becomes rigid
when e(t) asymptotically converges (decreases) to ed, see [6]. The parameter ed rep-
resents the minimum void ratio of the granular material. It is one of the model input
parameters and its physically realistic value can be obtained from measurements.

Remark 1: Unlike [6], where 1 < β is considered, we allow for β = 1 to represent
uncertainty in β by a closed interval, see Section 3. The value β = 1 does not cause
any singularity or discontinuity in the model behavior.
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Let us choose a special sort of loading and unloading. In particular, let σ be
continuous, piecewise exponential, and periodic with the period equal to 2T . More-

over, let
σ(t)

σ̇(t)
be alternately equal to 1 if σ̇(t) > 0, and −1 if σ̇(t) < 0. This choice

simplifies (8) and (3) to

〈X(t), I〉 = ηc1(t)
ė(t)

1 + e(t)
and X(t) = ηc1(t)ε̇(t), (10)

where η = 1 if σ̇(t) > 0, and η = −1 if σ̇(t) < 0.
The left equality in (10) and the equalities (4)–(5) lead, after a clever manipula-

tion, see [6, Section 4], to

ė(t)
ĉ1(e(t))

1 + e(t)

(
h(F (e(t)))− g(F (e(t)))

)
= 1 for σ̇ > 0, (11)

ė(t)
ĉ1(e(t))

1 + e(t)

(
h(F (e(t)))− g(F (e(t)))

)
= −1 for σ̇ < 0, (12)

where ĉ1(e(t)) = c1(t) and

h(f) =
〈A, I〉+ (〈B, I〉〈A,B〉 − 〈A, I〉‖B‖2) a2f 2

〈A, I〉2 − ‖〈A, I〉B− 〈B, I〉A‖2a2f 2
,

g(f) =
〈B, I〉

√
‖A‖2 − a2f 2 (‖A‖2‖B‖2 − 〈A,B〉2) af

〈A, I〉2 − ‖〈A, I〉B− 〈B, I〉A‖2a2f 2
.

In (11)–(12), the functions ĉ1 and F are used instead of c1 and f to emphasize
the dependence on the function e, which is the unknown function in the ordinary
differential equation (11)–(12).

The matrix function X(t) can be expressed through A, B, a, and F (e(t)), see [6,
Section 4]. As a consequence, if e(t) is known by solving (11)–(12), then X(t) is
known too, and ε(t) can be determined from the right equality in (10).

Remark 2: If S = −I, then (4)–(5) represent the case of isotropic loading. A detailed
analysis of this special case together with a convergence analysis is presented in [6,
Sections 2 and 3].

Remark 3: Let the function σ that reduces (8) to (10) be defined as in [6, Section 2].
In detail, let σ1 and σ2 be two positive real numbers such that σ1 < σ2, let T =
lnσ2 − lnσ1, and let tk = kT for k = 0, 1, 2, . . . . We define

σ(t) = σ1et−t2j for t ∈ (t2j, t2j+1), σ(t) = σ2et2j+1−t for t ∈ (t2j+1, t2j+2). (13)

3. Uncertain inputs

Before we elaborate on uncertain parameters, let us show the model response to
crisp inputs. As in [6, Section 5], we fix a = 0.4, ec = 0.8, ed = 0.4, f0 = 1, α = 0.1,
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Figure 1: Ratchetting. The cross marks the numerical limit after 50 loading-
unloading cycles. The strain evolution is fully characterized in the ε11ε22-plane be-
cause ε22 = ε33.

c̄ = 2, β = 1.03, σ1 = 10, and σ2 = 12. The initial conditions are e0 = e(0) = 0.7
and ε(0) = 0 · I. Let the matrix S be diagonal with s11 = −1.5 and s22 = s33 = −1.

Let us focus on strain as the model monitored response. We have ε22 = ε33 by
virtue of the chosen values of S. This feature allows for graphing the full strain
evolution in the ε11ε22-plane in the course of 50 loading-unloading cycles, see Fig. 1.
Although the loading and unloading are periodic, the strain cycles are not. As they
converge to an equilibrium, we observe a shift in their cycles accompanied by a de-
creasing amplitude. This phenomenon is called ratchet(t)ing, see, for example, [1, 3].

Let us define the quantity of interest (QoI) as the numerical limit (after 100
cycles) of the strain in the ε11ε22-plane, see Fig. 1. We will investigate the sensitivity
of the QoI with respect to eight parameters, namely, a, f0, ec, ed, α, c̄, β, and the
initial condition e0. The initial condition ε(0) = 0 · I and the loading parameters σ1

and σ2, see (13), remain fixed.

Let us make the listed parameters uncertain. To this end, we define the vector u =
(0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.20, 1.25) and vectors aunc = au, func

0 =
f0u, eunc

c = ecu, etc., where the nominal values from the first paragraph of this section
are used in a, f0, ec, etc. In other words, the nominal values will be decreased or
increased in 5% steps up to 25%.

The only exception is β, for which we define βunc = 0.55 + 0.6u to allow for
a significant amount of uncertainty covering also the nominal value of 1.03.

Our goal is to record the QoI (the limit of the strain) if uncertainty is considered
in one parameter and the other parameters remain fixed at their nominal values.

For s11 = −1.5 and s22 = s33 = −1, the computation shows that the influence
of the uncertainty in the parameters can be divided into two groups. One group is
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Figure 2: Response to the uncertainty in ed (left) and e0 (right). The symbol ◦
at the extreme position corresponds to the −25% change of the parameter nominal
value, the symbol + at the extreme position corresponds to the +25% change of
the parameter nominal value, the symbol × marks the QoI if the parameter has its
nominal value.

formed by func
0 , eunc

c , αunc, c̄unc, βunc and the other by aunc, eunc
d , eunc

0 . In the former
group, the uncertain input causes a response (in ε11 as well as ε22) within 0.2%–5%
of the response to the nominal values. The response is significantly stronger in the
latter group and reaches 30%–60% as we can see in Fig. 2. Regarding a, the responses
are located on a segment-like curve that starts at (−0.18,−0.1) for −25% and ends
at (−0.125,−0.036) for +25%.

Let us make the anisotropy stronger by setting s11 = −2.0 and s22 = s33 = −1.
The basic division into two groups of parameters has been preserved though the
response to c̄unc has increased to ±10% of the reference value in ε22, for instance.
The range of the response to aunc is larger and comprises both positive and negative
values, that is, even the sign of the ε22 strain component is uncertain if sufficient
amount of uncertainty is present in a, see Fig. 3. The responses to eunc

d and eunc
0 are

quite similar, only the latter is depicted in Fig. 3.
Since, as we observe, the anisotropy of σ has a strong influence on the range

spread of QoI, we also investigate the model response to uncertainty in s11 with
s22 = s33 fixed to −1. We choose s11 = −2 as the nominal value that will be
perturbed up to ±25%. Fig. 4 shows the model responses.

4. Observations and comments

In Fig. 4 (right), we observe that the response of ε22 = ε33 is close to zero if
s11 = −1.8 or s11 = −1.9. As a consequence, a relatively small perturbation can
cause a sign change. Negative strain means compression (in the corresponding direc-
tion), whereas positive strain means expansion. The latter phenomenon appears if
the S-anisotropy is strong enough to make the material compressed in the 1-direction
and (with a smaller magnitude) expanded in the 2- and 3-direction. This is also il-
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Figure 3: Response to the uncertainty in a (left) and e0 (right). The symbol ◦
at the extreme position corresponds to the −25% change of the parameter nominal
value, the symbol + at the extreme position corresponds to the +25% change of
the parameter nominal value, the symbol × marks the QoI if the parameter has its
nominal value.

lustrated by Fig. 2 (right) and Fig. 3 (right). In the former case (s11 = −1.5),
compression is observed in the 2-direction, whereas expansion comes in the latter
case where s11 = −2.

Nevertheless, the computation shows that the void ratio e(t) tends to its limit ed
(not depicted), that is, that the material is compacted for s11 ∈ [−2.5,−1.5].

We also observe that changes of parameter values can result in an amplified or
attenuated total effect. The latter is illustrated by Fig. 3, where an increase in a de-
creases the magnitude of both ε11 and ε22, but an increase in e0 has an opposite effect.

In some cases, a parameter-to-response mapping is nonlinear, see, for instance,
Fig. 3 (left), where the negative perturbations have significantly stronger effect than
the positive perturbations.

Although most of the graphs show points [ε11, ε22] distributed along a line, a closer
inspection would reveal a slight nonlinearity. A stronger nonlinear behaviour is
depicted in Fig. 4 (left). The question arises whether the observed tendency to form
an almost linear pattern has a deep reason rooted in the setting of the model, or
whether it is simply the consequence of a limited amount of uncertainty that prevents
nonlinearities to be fully developed; see Fig. 4 (left) where the circles form a linear
pattern for β ∈ [1, 1.12] that becomes curved if β belongs to [1.15, 1.3], that is, to
the interval relatively distant from the nominal value β = 1.03.

Readers familiar with fuzzy sets certainly noticed that relevant membership func-
tions can be constructed on the basis of Fig. 2–4. Indeed, the ε11-distance between
two marks determined by the same (except for the sign) perturbation percent is the
length of an α-cut of a membership function representing the fuzziness of ε11 induced
by the fuzziness of one input parameter. Similarly for ε22. However, a more elaborate
approach is necessary if a fuzzy set based on Fig. 4 (left) is to be inferred.
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Figure 4: Left: Response to the uncertainty in β. The symbol ◦ at the extreme
position corresponds to β = 1, whereas the symbol + at the extreme position marks
the response to β = 1.3; the β-step is equal to 0.03. Right: Response to the uncer-
tainty in s11. The symbol ◦ at the extreme position corresponds to the response to
s11 = −1.5, whereas the symbol + at the extreme position marks the response to
s11 = −2.5; the s11-step is equal to 0.1.

All the calculations were performed in the MATLAB R© environment.
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Institute of Mathematics CAS, Prague 2023

VALUATION OF TWO-FACTOR OPTIONS
UNDER THE MERTON JUMP-DIFFUSION MODEL

USING ORTHOGONAL SPLINE WAVELETS

Dana Černá
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Abstract: This paper addresses the two-asset Merton model for option pric-
ing represented by non-stationary integro-differential equations with two state
variables. The drawback of most classical methods for solving these types
of equations is that the matrices arising from discretization are full and ill-
conditioned. In this paper, we first transform the equation using logarithmic
prices, drift removal, and localization. Then, we apply the Galerkin method
with a recently proposed orthogonal cubic spline-wavelet basis combined with
the Crank–Nicolson scheme. We show that the proposed method has many
benefits. First, as is well-known, the wavelet-Galerkin method leads to sparse
matrices, which can be solved efficiently using iterative methods. Further-
more, since the basis functions are cubic splines, the method is higher-order
convergent. Due to the orthogonality of the basis functions, the matrices
are well-conditioned even without preconditioning, computation is simplified,
and the required number of iterations is less than for non-orthogonal cubic
spline-wavelet bases. Numerical experiments are presented for European-style
options on the maximum of two assets.

Keywords: wavelet-Galerkin method, Crank–Nicolson scheme, orthogonal
spline wavelets
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1. Introduction

Numerous models have been developed for the fair pricing of options. These mo-
dels include the famous Black–Scholes and stochastic volatility models, which assume
that the underlying asset price is a continuous function of time. This assumption,
however, is not always consistent with the behavior of real market prices. Therefore,
several models have been developed which allow for jumps in the price of the under-
lying. This paper focuses on one of these models, the Merton jump-diffusion model
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with two assets, represented by a nonstationary partial integro-differential equation
(PIDE) with two state variables. From the mathematical point of view, it is not
straightforward to solve this model numerically due to several difficulties. First, the
integral term results in linear systems with full matrices for many standard methods,
such as the finite difference and finite element methods. Moreover, the integral term
requires the computation of four-dimensional integrals. Furthermore, the differential
operator is degenerate, and functions representing the initial conditions are typically
not smooth.

Option pricing is a central topic in financial mathematics, and there is a vast
amount of literature concerning the numerical valuation of options. However, when
it comes to multi-dimensional jump-diffusion models, due to the difficulties men-
tioned above, there are only a few studies on numerical methods for their solution.
Thus, this remains an important and active field of research. An implicit finite
difference scheme combined with fixed-point iterations was proposed for two-asset
jump-diffusion models in [9]. Operator-splitting methods and various-time stepping
schemes were studied in [4]. Wavelet-based methods have also been employed for
multi-dimensional models, for example, in [7, 11, 13]. In [7], the wavelet-Galerkin
method was used for the two-asset Merton model. Compared with [7], the method
proposed in this article uses orthogonal wavelet bases and includes transformation
into logarithmic prices and drift removal, resulting in a different variational problem.

As already mentioned, the standard methods used for PIDEs typically lead to full
matrices. In contrast, the Galerkin method with a wavelet basis leads to matrices
that can be closely approximated by sparse matrices, as discussed in [2, 6, 11]. This
paper uses the Galerkin method with orthogonal cubic spline wavelets combined
with the Crank–Nicolson scheme. The aim is to show that this method is suitable
and efficient for the two-asset Merton model. Its advantages are that the resulting
system’s matrices are sparse and uniformly conditioned, higher-order convergence
is achieved, and a small number of iterations is needed to solve the system to the
required accuracy.

2. The two-asset Merton model

The two-asset Merton model is a generalization of the original Merton jump-
diffusion model developed in [12]. The model assumes that the price Siτ of the asset i
at time τ follows the jump-diffusion process

ln

(
Siτ
Si0

)
=

(
r − σ2

i

2
− λκi

)
τ + σiW

i
τ +

Nτ∑
k=1

Y i
k , i = 1, 2, (1)

see [3, 4]. The parameters in the model have the following interpretation. The
parameter r represents the risk-free interest rate, and σi is the volatility of asset i
corresponding to the diffusion part of the process. The processes W 1

τ and W 2
τ are

Wiener processes with correlation coefficient ρ. The number of price jumps is rep-
resented by the Poisson process Nτ with intensity λ. The random variables Y i

k are
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independent and identically distributed for a given i. The parameter κi is the ex-
pected relative jump size, κi = E( eY

i
k − 1).

The process represented by (1) is a general jump-diffusion process. The Merton
model further assumes that eY

1
k and eY

2
k have the bivariate log-normal distribution

with density

f (y1, y2) =
K

y1y2

exp

−
(

ln y1−γ1
δ1

)2

+
(

ln y2−γ2
δ2

)2

− 2ρ̂
(

ln y1−γ1
δ1

)(
ln y2−γ2

δ2

)
2 (1− ρ̂2)

 , (2)

where K = 1/2πδ1δ2

√
1− ρ̂2. Let T be the maturity date, and let Si be the price of

asset i. Then, t = T − τ is the time to maturity and the option value V (S1, S2, t)
satisfies [4, 9, 12]

∂V

∂t
− LD (V )− LI (V ) = 0, S1, S2 ∈ (0,∞) , t ∈ (0, T ) , (3)

where LD is a degenerate differential operator defined as

LD (V ) =
σ2

1S
2
1

2

∂2V

∂S2
1

+ ρσ1σ2S1S2
∂2V

∂S1∂S2

+
σ2

2S
2
2

2

∂2V

∂S2
2

(4)

+ (r − λκ1)S1
∂V

∂S1

+ (r − λκ2)S2
∂V

∂S2

− (r + λ)V

and LI is an integral operator given by

LI (U) = λ

∞∫
0

∞∫
0

V (S1y1, S2y2, t) f (y1, y2) dy1 dy2. (5)

The degeneracy means that for S1 = 0 and S2 = 0, some second-order terms of the
differential operator LD vanish. The first-order terms of LD represent drift.

The initial and boundary conditions depend on the type of option. We consider
a European option on the maximum of two assets as an example. This option gives
its holder the right, but not the obligation, to sell (for a put option) or buy (for
a call option) the most expensive of two underlying assets at the strike price K at
maturity T . In this case, the initial condition representing the value of an option at
maturity is

V (S1, S2, 0) =

{
max (K −max (S1, S2) , 0) for a put option,

max (max (S1, S2)−K, 0) for a call option.
(6)

3. Transformation and variational formulation

Two main approaches are typically employed for the numerical solution of PDEs
and PIDEs representing option-pricing problems. The first approach moves directly
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to a variational formulation of the equation with the degenerate differential operator.
In this case, the analysis has to be carried out using weighted Sobolev spaces, and
error estimates are available only in the norms of these spaces. This approach has
been studied for PDE models, for example, in [1], and for the Merton model in [7].

This paper focuses on the second approach, which is based on transformation
into logarithmic prices. This has the advantage that it removes the degeneracy of
the differential operator. Therefore, standard Sobolev spaces are used for the analysis
and error estimates. Various papers have studied this approach, but mainly for PDE
models. For PIDEs, we refer to [11, 13].

Hence, we first adjust (3). The degeneracy and drifts are removed using the
substitution U (x1, x2, t) = V (S1, S2, t), where xi = logSi − (σ2

i /2 + λκi − r) t for
i = 1, 2. Then, the unbounded domain R2 for (x1, x2) is approximated by a bounded
domain Ω = I × I, where I is a chosen finite interval. Finally, as in [11], we set U to
zero outside Ω, that is,

U (x1, x2, t) = 0, (x1, x2) ∈ R2\Ω, t ∈ (0, T ) . (7)

Note that this homogeneous Dirichlet boundary condition is artificial and does not
describe the actual situation. However, setting this condition simplifies the method
and does not affect the solution significantly in the parts of Ω which are not close to
the boundary, when Ω is large enough, see [11].

After these adjustments, we obtain an elliptic differential operator

D (U) =
σ2

1

2

∂2U

∂x2
1

+ ρσ1σ2
∂2U

∂x1∂x2

+
σ2

2

2

∂2U

∂x2
2

− (r + λ)U (8)

and an integral operator

I (U) = λ

∫∫
Ω

U (t1, t2, t) g (t1 − x1, t2 − x2) dt1 dt2, (9)

where g (x1, x2) = f (ex1 , ex2) ex1ex2 . The transformed equation has the form

∂U

∂t
= D (U) + I (U) . (10)

Let 〈·, ·〉 denote the L2 inner product. To derive a variational formulation, we
define a bilinear form a = aD − aI , where

aD (u, v) =
σ2

1

2

〈
∂u

∂x1

,
∂v

∂x1

〉
+ ρσ1σ2

〈
∂u

∂x1

,
∂v

∂x2

〉
(11)

+
σ2

2

2

〈
∂u

∂x2

,
∂v

∂x2

〉
+ (r + λ) 〈u, v〉

and aI (u, v) = 〈I (u) , v〉. Let U0 ∈ L2 (Ω) be the transformed payoff function. The
variational formulation consists in determining the function U ∈ L2 (0, T ;H1

0 (Ω))
such that ∂U

∂t
∈ L2 (0, T ;H−1 (Ω)) and〈

∂U

∂t
, v

〉
+ a (U, v) = 0 ∀v ∈ V, a.e. in (0, T ) , U (x1, x2, 0) = U0 (x1, x2) . (12)
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4. The orthogonal cubic spline-wavelet basis

There is not a universally accepted definition of a wavelet basis in the mathe-
matical literature. Here, we consider a wavelet basis of the space L2 (I), where I is
a bounded interval, in the following sense. Let J be an index set such that λ ∈ J
takes the form λ = (j, k) and |λ| = j denotes the level. Then, Ψ = {ψλ, λ ∈ J } is
a wavelet basis of L2 (I) if it satisfies the following four conditions:

(i) The set Ψ is an orthogonal basis for L2 (I).

(ii) The basis functions are local, i.e., diam supp ψλ ≤ C2−|λ| for all λ ∈ J .

(iii) The set Ψ has a hierarchical structure,

Ψ = Φj0 ∪
∞⋃
j=j0

Ψj, Φj0 = {φj0,k, k ∈ Ij0} , Ψj = {ψj,k, k ∈ Jj} . (13)

The functions φj0,k are called scaling functions and the functions ψj,k are called
wavelets.

(iv) The wavelets have vanishing moments, that is, 〈p, ψj,k〉 = 0, k ∈ Jj, j ≥ j0, for
any polynomial p of degree less than L ≥ 1, where L depends on the wavelet
type.

The method in this paper uses orthogonal cubic spline wavelets on the interval
with four vanishing moments, recently constructed in [8] using general principles
from [10]. The scaling functions in the inner part of the interval are defined as trans-
lations and dilations of six generators, which are illustrated in Fig. 1. In addition,
boundary functions are constructed near the endpoints of the interval.

Similarly, wavelets in the inner part of the interval are constructed as translations
and dilations of six generators, and several boundary functions need to be added.
Plots of the wavelet generators are shown in Fig. 2. Since all the basis functions are
cubic splines, they are given in closed form and can be handled easily. The resulting
basis satisfies the conditions i)− iv) above.

The two-dimensional wavelet basis is constructed using so-called anisotropic ten-
sor products of these one-dimensional bases see [6, 8], that is, it contains the func-
tions ψλ = ψλ1 ⊗ ψλ2 , where ψλ1 and ψλ2 are univariate basis functions. Then
|λ| = max (λ1, λ2) is a level of ψλ. Furthermore, we denote [λ] = min (λ1, λ2).

5. The orthogonal wavelet method

Let Ψk contain all basis functions up to level k and let Xk = span Ψk. Let Uk,0
be an approximation of U0 ∈ L2 (Ω) in Xk. The wavelet-Galerkin method consists in
finding a solution Uk ∈ L2 (0, T ;Xk) such that ∂Uk

∂t
∈ L2 (0, T ;X ′k) and the equation〈

∂Uk
∂t

, vk

〉
+ a (Uk, vk) = 0, Uk (x1, x2, 0) = Uk,0 (x1, x2) (14)

is satisfied for all vk ∈ Xk and almost everywhere in (0, T ).
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Figure 1: Generators of inner orthogonal cubic spline scaling functions.

The Crank–Nicolson scheme is used for temporal discretization to obtain a fully
discrete scheme. Let M ∈ N, τ = T/M , tl = lτ for l = 0, . . . ,M , and let U l

k (x1, x2) =
Uk (x1, x2, tl). The aim is to find a solution U l

k of the equation〈
U l+1
k , vk

〉
τ

−
〈
U l
k, vk

〉
τ

+
a
(
U l+1
k , vk

)
2

+
a
(
U l
k, vk

)
2

= 0, U0
k = Uk,0 (15)

for all vk ∈ Xk.
Now, we expand the solution U l

k in the basis Ψk,

U l
k =

∑
ψλ∈Ψk

(
clk
)
λ
ψλ, (16)

set vk = ψµ, and substitute it into (15).
Let Gk and Kk be matrices corresponding to the differential and integral terms,

respectively, defined as

Gk
µ,λ =

〈ψλ, ψµ〉
τ

+ aD (ψλ, ψµ) , Kk
µ,λ = aI (ψλ, ψµ) , ψλ, ψµ ∈ Ψk. (17)

Furthermore, let the vector f lk be defined as

(
f lk
)
µ

=

(
U l
k, ψµ

)
τ

−
a
(
U l
k, ψµ

)
2

, ψµ ∈ Ψk. (18)

Then, for l = 1, . . . ,M, the column vector cl+1
k of coefficients

(
cl+1
k

)
λ

is a solution of

the linear system Akcl+1
k = f lk, where Ak = Gk −Kk.
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Figure 2: Generators of inner orthogonal cubic spline wavelets.

For the numerical solution of this system, the GMRES method is used. No
preconditioning of the system is necessary because the use of orthogonal wavelets
ensures that the system is well-conditioned similarly as in [8].

Since the matrix Gk corresponds to the differential operator, it is sparse. The
GMRES method requires multiplying the matrix Gk with a vector. This can be
realized using the Kronecker product of matrices corresponding to one-dimensional
differential operators, as detailed in [8]. Due to the L2 orthogonality of the basis,
some of these matrices are identity matrices, which positively affects the resulting
condition number of the matrix Gk and greatly simplifies the computation.

The next theorem, for which a proof can be found in [6], yields a decay estimate
for the entries of the matrix Kk.

Theorem 1. Let ψλ and ψµ be wavelets with L = 4 vanishing moments, as defined
in Section 4. Then there exists a real constant C such that

|aI (ψλ, ψµ)| ≤ C2−(L+1)([λ]+[µ]). (19)

By Theorem 1, the entries of the matrix Kk decrease exponentially. Thus, many
of them are very small and can be set to zero. This process is called compression of
the matrix Kk. For the compression strategy and the effect of compression, we refer
to [6].

6. Numerical example

Numerical results are presented for a benchmark example from [4, 7]. The market
values of European put and call options on the maximum of two assets are evaluated
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using the proposed method. The advantage of considering options on the maximum
of two assets is that, in this special case, the analytic solution is known [3], which
enables us to compute the errors of the numerical solution.

The parameters for the options are set as in [4, 7]. The strike price is K = 100,
the risk-free interest rate is r = 0.05, the volatilities of the asset prices are σ1 = 0.12
and σ2 = 0.15, and the correlation coefficient for the asset prices is ρ = 0.3. The
parameters for the jump part of the process are λ = 0.6, γ1 = −0.1, γ2 = 0.1, ρ̂ =
−0.20, δ1 = 0.17, and δ2 = 0.13. The time to maturity is T = 1 year. A sufficiently
large domain for (S1, S2) has to be chosen, therefore we set it to be (0.1, 5K)2. Plots
of the resulting functions representing prices of put and call options are shown in
Fig. 3. Since artificial boundary conditions are used, the plot of the put option price
is shown only in the region (1, 200)2 and the plot of the call option price is shown
only in the region (1, 150)2, to avoid the area near S1 = 0 and S2 = 0.

Figure 3: The functions representing prices of European put (left) and call (right)
options at one year to maturity.

Table 1 lists the resulting values of options, errors, and numbers of iterations.
In this table, N denotes the number of basis functions and M denotes the number
of time steps. The values VP represent the computed prices of options for asset
prices (S1, S2) equal to P = (100, 100). The corresponding pointwise error is denoted
by ρP . We set a region of interest as ROI = (K/2, 3K/2)2 and compute the L∞ (ROI)
error ρ∞ and the L2 (ROI) error ρ2. For the numerical solution, the GMRES method
without restart is used. The GMRES iterations are set to stop when the relative
residual is less than 10−9. The number of iterations is denoted by it.

Conclusions

A wavelet-based method is proposed for pricing European-style two-factor options
under the Merton jump-diffusion model. The first important step of the method is
adjusting the original integro-differential equation, including transformation into log-
arithmic prices, drift removal, and localization. After these adjustments, it is possible
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type N M VP ρP ρ∞ ρ2 it
put 144 2 2.98889 -1.46e0 6.55e0 2.30e-1 7

576 8 1.30073 -1.19e-1 1.29e0 4.14e-2 7
2304 32 1.19320 -1.11e-2 2.90e-1 4.61e-3 6
9216 128 1.18752 -5.46e-3 2.67e-2 6.30e-4 6

call 144 2 20.6315 -4.23e0 2.63e1 3.37e-1 8
576 8 15.7047 6.93e-1 2.73e0 3.29e-2 7

2304 32 16.3922 5.51e-3 1.50e-1 1.30e-3 6
9216 128 16.3923 5.46e-3 6.30e-2 4.99e-4 6

Table 1: Option values VP for P = (100, 100), pointwise errors ρP , L∞ errors ρ∞,
L2 errors ρ2, and numbers of GMRES iterations it.

to remove the degeneracy of the differential operator and derive a variational for-
mulation using standard Sobolev spaces. The variational problem is solved by the
Galerkin method with an orthogonal cubic spline-wavelet basis combined with the
Crank-Nicolson scheme. It is shown that the method is suitable for the given equation
and has many advantages. Due to the vanishing moments of the wavelets, the matrix
corresponding to the integral term can be efficiently represented by a sparse matrix,
which is not the case in many standard methods. Furthermore, the L2 orthogonal-
ity of the basis results in matrices with uniformly bounded condition numbers even
without any preconditioning. Therefore, a sufficiently accurate solution can be ob-
tained using a small number of iterations. Since the basis functions are cubic splines,
the method is higher-order convergent. The proposed method could be used to price
various options and could be generalized to other jump-diffusion models and options
with more assets.
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Abstract: In nonlinear dynamical systems, strong quasiperiodic beating
effects appear due to combination of self-excited and forced vibration. The
presence of symmetric or asymmetric beatings indicates an exchange of en-
ergy between individual degrees of freedom of the model or by multiple close
dominant frequencies. This effect is illustrated by the case of the van der Pol
equation in the vicinity of resonance. The approximate analysis of these non-
linear effects uses the harmonic balance method and the multiple scale method.
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1. Introduction

The frequency lock-in effect occurs, e.g., when an elastic profile vibrates in buffet-
ing flow. It is characterised by the fact that the vibration frequency does not follow
the vortex shedding frequency but locks onto the natural frequency of the profile.
Such behaviour is illustrated in Fig. 1a, see [6], where the linear dependence of the
frequency ratio on the stream velocity (which directly relates to the vortex shedding
frequency) is interrupted at the ratio 1 for a non-negligible wind velocity interval.

This lock-in effect is usually modelled using the van der Pol equation, which corre-
sponds to a single-degree-of-freedom (SDOF) physical system representing a circular
bar in an air flow, see Fig. 1b. The spring in the SDOF model is considered linear,
the damping term has the (quadratic) van der Pol character. The flow around the
body induces a regular vortex shedding that is, in general, perturbed by a random
pressure fluctuations.

The measured response in the lock-in region and its neighbourhood consists of the
following cases, cf. also Fig. 1a: (a) small stationary amplitudes; the velocity is lower
than the critical velocity and the vortex-shedding frequency is lower that the natural
frequency; (b) the lock-in regime, a stationary vortex-induced resonance, maximal
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Figure 1: a) frequency ratio vs. the flow velocity and the lock-in domain; b) scheme
of the SDOF model, [6]

amplitudes; (c) large beating amplitudes, caused by a small detuning of the forcing
and natural frequencies outside the lock-in region; (d) small non-stationary post-
critical vibrations of forced (non-resonant) vibrations caused by vortex shedding with
a frequency larger than the natural frequency. The transition between regions (c)
and (d) is not sharp; the influence of the natural frequency decays exponentially
with increasing distance from the boundary of the lock-in region (b).

The case (c), i.e., the regime in the neighbourhood of the stationary lock-in, is
studied in this contribution. The beating effect is caused by multiple close dominant
frequencies which are present in the response. When a small random component is
also present, the response has a character of a cyclostationary process [2].

This paper, as part of a larger project, restricts itself to the behaviour of the van
der Pol equation solution under deterministic harmonic excitation in a region that is
closely adjacent to the lock-in region. The general mathematical model presented in
Section 2 is further studied numerically in Sect. 2.1, using the “harmonic balance”
method (Sect. 2.2) and the “multiple scales” method (2.3).

2. Mathematical model

Vibration of a slender structure in an airflow is usually modelled using the van
der Pol equation with a harmonic right hand side:

ü− (η − νu2)u̇+ ω2
0u = Pω2 cosωt+ h · ξ(t) . (1)

In Eq. (1), u(t) – displacement [m], u̇(t) – velocity [ms−1], η, ν – parameters of the
damping [s−1, s−1m−2], ω0– eigen-frequency of the adjoint linear SDOF system, ω –
excitation frequency of the vortex shedding [s−1], Pω2 – amplitude of the harmonic
excitation (acceleration) [ms−2], h – multiplicative constant [ms−2], ξ(t) – stationary
Gaussian random process [1]. In the rest of the paper, h = 0 is assumed.

When regarded as a dynamical system, the solution exhibits one stable limit
cycle, the rest position u(t) = 0 is unstable.
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2.1. Numerical analysis

For the first view, the stationary/non-stationary character of the solution to (1)
can be analysed numerically in the frequency domain. Figure 2 shows the Fourier
analysis of the set of responses obtained for the frequency range near the resonance
frequency ω0 = 1. The dominant peaks of the periodogram for each value of ω are
plotted vertically. This way, the ordinate represents the Fourier frequency coefficients
present in the response. The color intensity shows the absolute values of the dominant
Fourier coefficients on a logarithmic scale. The detuning on the abscissa is defined

as ∆ =
ω2
0−ω2

2ω
. The stationary lock-in interval of the harmonic response appears

for −0.1 . ∆ . 0.12, although there are clearly two superharmonic components
(ω = 3ω0, 5ω0). The complex behaviour of the nonlinear response is evident from
the existence of a subharmonic resonance interval for negative ∆ (i.e., for ω ≈ 1/3).

The most important aspect for this work is the behaviour at the boundaries of
the lock-in intervals. There the dominant frequencies divide into a series of close
but distinct frequencies that cause the beating character of the response. Their
mutual distances increase rapidly with increasing distance from the lock-in region
and cause shortening of the beating periods in the response. It is clear from this
that the monochromatic representation of the solution used in the remaining text is
only approximate and more accurate estimates will need to be used in the future.

2.2. Analysis based on the harmonic balance

Following the more general approach by the authors in [5], for a weak excitation
force and a small detunig, the response can be expected to have an approximately
harmonic form with slowly varying amplitude U(τ) and phase ϕ(τ), τ = εt, ε� 1:

u→ U(τ) cos(ωt+ ϕ(τ)) . (2)

The harmonic balance procedure consists in multiplying Eq. (1) by sinωt or cosωt
and subsequent integration over one period t ∈ (0, 2π/ω). Since (τ) is “slow time”,
the variability of U and ϕ within one period can be neglected and both functions
can be treated as constants. Then:

U̇ =
1

2
U

(
η − 1

4
νU2

)
− 1

2
Pω sinϕ , (3a)

ϕ̇ = ∆− 1

2U
Pω cosϕ , (3b)

where ∆ =
ω2
0−ω2

2ω
≈ ω0 − ω and the derivative U̇ , ϕ̇ is taken with respect to τ . The

stationary amplitude for U̇ = 0, ϕ̇ = 0 is given by

U2

(
4∆2 +

(
η − ν

4
U2
)2
)

= ω2P 2 . (4)

Stability of admissible solutions can be assessed using two Routh-Hurwitz conditions

64∆2 +
(
4η − 3νU2

) (
4η − νU2

)
≥ 0 , (5a)

νU2 − 2η ≥ 0 . (5b)
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Amplitudes of possible stationary solutions following Eq. (4), depending on the
value of detuning ∆, are shown in Fig. 3. The stable solutions according to the
Routh-Hurwitz conditions are shown in solid lines, the unstable parts are dashed.
The greyed areas denote negative values of conditions (5a,5b), respectively, i.e., the
unstable regions. To complete the picture, the results from numerical simulations of
the original Eq. (1) are shown in Fig. 5b. The stationary amplitudes are numerically
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Figure 2: Frequency response characteristics of Eq. (1). The nonzero coefficients of
the angular frequency are plotted versus detuning ∆, the colour scale corresponds
to the absolute values of the respective Fourier coefficients. Values used: η = 1,
ν = 0.5, ω0 = 1, P = 1.
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(5b)

(5a)

Figure 3: Theoretical amplitudes U of the harmonic solution given by Eq. (4) depend-
ing on detuning ∆. Left: stationary amplitudes for different values of the excitation
parameter P ; right: detailed view together with results from numerical simulations,
indicated as colour dots. Values used: η = 1, ν = 0.5, ω = 1.
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identified as those, where the variance of local maxima of the response for fixed values
of ∆, P is lower than certain threshold. The numerical results appear to incline to the
positive values of detuning ∆, however, the global tendency respects the theoretical
mono-harmonic results.

The stationarity condition for the phase shift, ϕ̇ = 0 in Eq. (3b), introduces
a limit value of detuning

∆0 =
ωP

2U0

, such that cosϕ0 =
∆

∆0

, (6)

which indicates the state when the phase shift in Eq. (3b) vanishes for U2
0 = 4 ν

η
.

This amplitude corresponds to the horizontal tangent at the top of the region defined
by condition (5a). When ∆ value varies, the sign of the phase shift changes when
crossing ∆0 = ± 1

4
Pω
√
ν/η.

The stationary solution exists for the detunig up to value ∆s, which is given by
the condition of existence of a real solution of Eq. (4). The discriminant of Eq. (4)
represents a cubic polynomial equation in ∆2:(

64
(
12∆2 − η2

)3
+
(
288∆2η + 8η3 − 27νP 2ω2

)2
)

= 0 , (7)

which can have up to three real roots. The largest of these, if it exists, defines
the boundary detuning of ∆s, depending on the system and excitation parameters.
Unfortunately, there is no simple expression for ∆s. From the root of the discriminant
with respect to P 2ω2 of Eq. (7), it is possible to find the limiting excitation value
for which Eq. (7) is applicable, i.e.,

Pω ≥ 4η
√

2

3
√

3

√
η

ν
. (8)

The limiting amplitude for the values used in Fig. 3 would be P = 1.53. For larger
values of excitation Pω, the existence of a stable stationary solution is governed only
by the RH condition (5b). In such a case, the “ultimate” limit ∆s2 follows from
Eqs. (4,5b):

∆s2 =
1

2
√

2

√
ν

η

√
P 2ω2 − η3

2ν
. (9)

The role of the detuning limit value ∆s becomes apparent also when a general
non-stationary solution to Eq. (3) is assumed. In such a case, after integration

∆2 > ∆2
s , ϕ = 2 arctan

(
∆−∆s

D
tan

1

2
Dt

)
, (10a)

∆2 < ∆2
s , ϕ = 2 arctan

(
D(1− eDt)

2∆

)
, (10b)

where D =
√
|∆2

s −∆2| and (without loss of generality) t0 = 0 has been assumed.
The phases in Eqs. (10) represent the asymptotically constant (10b) and periodic
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Figure 4: Time plot of numerical solution u(t) and analytical amplitude U(τ)
calculated from Eqs. (10b).

solutions (10a), which represent the stationary and nonstationary amplitudes, re-
spectively. The amplitude can be finally enumerated from Eq. (3).

Figure 4 shows the agreement between numerical and analytical solutions that can
be achieved when the initial conditions are carefully matched. In general, however,
the agreement is not so good, as it was shown in Fig. 3b. This implies that, if
necessary, a multi-harmonic Ansatz for the harmonic balance method or different
levels of the perturbation method must be used to obtain more accurate results.

2.3. Analysis based on the multiple scales method

An alternative analytic approach is based on the multiple scales method, [1, 4, 3].
For this purpose, Eq. (1) will be rewritten so that its nonlinear term can be treated
as a small quantity

ü− ε (η − νu2)u̇+ ω2
0u = Pω2 cosωt , (11)

where ε is assumed to be a small parameter, ε� 1. The solution will then be sought
in the form of an expansion combining the slow and fast time scale:

u(t)→ u0 (T0, T1) + ε u1 (T0, T1) , Tk → εkt. (12)

Substituting Eq. (12) into (11) and comparing coefficients of similar powers of ε:

ε0 :
d2u0

dT 2
0

+ ω2
0u0 = Pω2 cos(tω) (13a)

ε1 :
d2u1

dT 2
0

+ ω2
0u1 =

du0

dT0

(
νu2

0 − η
)
− 2

d2u0

dT0dT1

. (13b)

For the homogeneous case (P = 0), u0 satisfying Eq. (13a) can be written as

u0 = A(T1)eiω0T0 + A(T1)eiω0T0 , (14)
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where A is the function to be determined. The condition of avoiding secular terms
in u1 yields

A (T1)
(
νA (T1) Ā (T1)− η

)
+ 2A′ (T1) = 0 . (15)

Writing A (T1) = α(T1)eiβ(T1) for real functions α, β, the stationary (A′ (T1) = 0)
response amplitude agrees for η > 0 with the parallel solution to Eq. (4):

u0(t) = 2

√
η

ν
cos (ω0t) and u1(t) = −

√
η

ν

η

4ω0

sin (3ω0t) . (16)

For P > 0, the analogy of Eq. (14) reads

u0 = iΩpe
iωT0 − iΩpe

−iωT0 + A(T1)eiω0T0 + A(T1)e−iω0T0 ; Ωp =
P

2 (ω2 − ω2
0)

(17)

Then, the RHS in Eq. (13b) for u1 comprise the following components

κ1e
iT0ω + κ2e

iT0ω0 + κ3e
iT0(2ω+ω0) + κ4e

iT0(ω+2ω0)+

+ κ5e
iT0(2ω−ω0) + κ6e

iT0(ω−2ω0) + κ7e
3iT0ω0 + κ8e

3iT0ω+ (18)

+ complex conj. terms

where it has been denoted

κ1 = ωΩp

(
ν
(
2 |A (T1)|2 + Ω2

p

)
− η
)
,

κ2 = −iω0

(
2A′ (T1) + A (T1)

(
ν |A (T1)|2 − η + 2νΩ2

p

))
,

κ3 = iνΩ2
p (2ω + ω0)A (T1) , κ4 = νΩp (ω + 2ω0)A (T1)2 ,

κ5 = iνΩ2
p (2ω − ω0) Ā (T1) , κ6 = νΩp (ω − 2ω0)A (T1)

2
,

κ7 = −iνω0A (T1)3 , κ8 = −νωΩ3
p .

For the non-resonant solution in the first approximation, the elimination of secular
terms reduces to the condition

κ2 = 0 . (19)

Assuming again A = αeiβ and expanding real and imaginary parts of Eq. (19) one
obtains

α = 0, ±
√
η

ν
− Ω2

p , β = kπ , k ∈ Z . (20)

The solution α = 0 is stable in the vicinity of the resonance, but is not applica-
ble there due to the unmet assumptions. The non-zero value of α applies only at
some distance from the eigenfrequency, where the expression below the square root
becomes positive. This later case, when substituted into Eq. (17), gives

u0 = − Pω2

ω2 − ω2
0

sin(tω)− 2

ω2 − ω2
0

√
η

ν
(ω2 − ω2

0) 2 − 1

2
P 2ω4 cos (tω0) . (21)
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The other option, α = 0, would nullify the coefficient sin(ω0t) in Eq. (21). This way
the quasiperiodic character of u0 will appear only when the non-zero α attains the
real value, i.e., for η/ν > Ω2

p. Due to different assumptions used in the multiple scales
method, this condition does not correspond exactly to ∆s defined above, however,
except for a factor of 2−1/2, it captures ∆0 defined in Eq. (6).

The correction term u1 would involve elimination of more secular terms originat-
ing from sub-/super-harmonic cases when ω ≈ 1/3ω0, 1/2ω0, 2ω0, 3ω0, etc., and their
combinations; this is, however, out of scope of the current work.

3. Conclusions

A simple van der Pol deterministic system with a harmonic right-hand side was
studied in the vicinity of the resonance. In addition to the previously reported results,
the boundaries of the lock-in region due to the primary resonance were derived
using the harmonic balance method. A limited complementary analysis based on
the multiple scales method was also presented. It turns out that the weakness of the
harmonic balance method is its link to the specific frequency that is assumed in the
solution. In this respect is the multiple scales method more flexible because it allows
more resonant frequencies to be identified in the solution. On the other hand, the
use of the multiple scales method is limited to the assumption of small nonlinearity,
which can be limiting in some cases. In both approaches, a more detailed analysis will
have to be adopted in order to qualitatively assess the fine details of the quasiperiodic
processes surrounding the resonance region.
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Abstract: Hybrid LSQR represents a powerful method for regularization of
large-scale discrete inverse problems, where ill-conditioning of the model ma-
trix and ill-posedness of the problem make the solutions seriously sensitive to
the unknown noise in the data. Hybrid LSQR combines the iterative Golub-
Kahan bidiagonalization with the Tikhonov regularization of the projected
problem. While the behavior of the residual norm for the pure LSQR is well
understood and can be used to construct a stopping criterion, this is not the
case for the hybrid method. Here we analyze the behavior of norms of approx-
imate solutions and the corresponding residuals in Hybrid LSQR with respect
to the Tikhonov regularization parameter. This helps to understand conver-
gence properties of the hybrid approach. Numerical experiments demonstrate
the results in finite precision arithmetic.

Keywords: inverse problem, noise, Hybrid LSQR, Tikhonov regularization
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1. Introduction

We are concerned with an ill-posed inverse linear approximation problem

Ax ≈ b, A ∈ Rm×n, b ∈ Rm, (1)

where m ≥ n, m,n ∈ N. The matrix A represents a (possibly large-scale) discretized
smoothing operator, b stands for the data typically polluted by unknown additive
noise e. Formally,

b = bexact + e,

where bexact denotes noise-free data. Further, denote η = ‖e‖/‖b‖ the noise level,
with ‖.‖ being the standard Euclidean norm. Problems of the form (1) arise in many
applications such as medical imaging or gravity surveying, see for example [4, 6].
Since the approximate solution is here seriously sensitive to the noise in b, regular-
ization needs to be applied in order to obtain a meaningful solution. A wide variety

DOI: 10.21136/panm.2022.07

65

http://dx.doi.org/10.21136/panm.2022.07


of regularization techniques have been developed, where for large-scale problems, it-
erative schemas are often the methods of choice. Here regularization is achieved by
early termination of the process. Determining a reliable stopping criteria is crucial,
because iterative methods applied on (1) typically exhibit semiconvergence. Alter-
natively, iterations can be further combined with direct regularization yielding the
so-called hybrid methods such as Hybrid LSQR or Hybrid GMRES, see [1] for an
overview. Hybrid methods are known for their ability to stabilize the computation
and making it less sensitive to stopping criteria. Analysis of the properties of hybrid
methods is, however, significantly more complicated.

In this paper we focus on Hybrid LSQR combining iterative projection on a Krylov
subspace with the Tikhonov regularization of the projected small problem. We ana-
lyze residual norm behavior, since its stagnation indicates stabilization of the method
and is thus used in stopping criteria when solving ill-posed problems. While prop-
erties of the residuals for standard LSQR regularization have already been analyzed
(see, e.g, [2, 8]), this is not the case for Hybrid LSQR, where the behavior is highly
dependent on the inner Tikhonov regularization parameter λk that changes in each
outer iterative step k. Note that some analysis of LSQR combined with Tikhonov
regularization for constant λk was provided already in [10]. A variety of parameter-
choice methods have been introduced for selecting λk, e.g., the Discrepancy principle,
L-curve or Generalized Cross Validation, see [4, 9, 12]. Their suitability for hybrid
framework was studied in [3]. Here we, however, do not restrict ourselves to a partic-
ular parameter-choice strategy. We provide conditions on parameters λk to guarantee
a decrease of the residual norm in hybrid LSQR and discuss its meaning in regu-
larization process. Throughout the paper we assume exact arithmetic. Numerical
experiments then demonstrate the presented properties in finite precision arithmetic.

2. Krylov projection and Tikhonov regularization

Hybrid LSQR represents a combination of the well known Golub-Kahan iterative
bidiagonalization [10, 11] with the Tikhonov regularization. The Golub-Kahan bidi-
agonalization starting with s1 = b/ ‖b‖ produces after k iterations the matrices Wk

and Sk+1, having orthogonal basis of Kk(ATA,AT b) and Kk(AAT , b) in their columns,
respectively. Assuming that the algorithm does not stop early, bidiagonalization co-
efficients αi > 0, βi > are stored in a lower bidiagonal matrix Lk,

Lk =


α1

β2 α2

. . . . . .

βk αk

 ∈ Rk×k, and we denote Lk+ =

[
Lk

eTk βk+1

]
∈ R(k+1)×k,

where ek is the k-th Euclidean vector of an appropriate size. Then it holds that

AWk = Sk+1Lk+, ATSk = WkL
T
k . (2)
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In the standard LSQR, the original problem (1) is replaced by the problem

min
y∈Rk

{‖AWky − b‖}. (3)

Using relations (2) and the orthogonality of Sk, we have

‖AWky − b‖ = ‖Sk+1Lk+y − b‖ =
∥∥ST

k+1Sk+1Lk+y − ST
k+1b

∥∥ = ‖Lk+y − β1e1‖ (4)

for any y ∈ Rk. The projected problem (3) thus translates to

min
y∈Rk

{‖Lk+y − β1e1‖}, where β1 = ‖b‖ ,

having a unique solution yk.
For inverse problems, however, the projected problem subsequently inherits their

ill-posedness and noise gradually propagates to the projections, see [7]. Thus, Hybrid
LSQR further applies Tikhonov regularization on the projected problem and solves

min
y∈Rk
{‖Lk+y − β1e1‖2 + λ2

k ‖y‖
2}, (5)

for some regularization parameter λk > 0, λk ∈ R. The obtained minimization prob-
lem has also a unique solution, further denoted yk. Putting the initial approximation
x0 = 0, the approximate solution to the original problem (1) is then obtained by

xk = Wkyk and xk = Wkyk (6)

for LSQR and Hybrid LSQR, respectively.
Let us further clarify some notation. Denote the residuals corresponding to LSQR

and Hybrid LSQR in the iteration k as follows

rk(x) = b− Ax, pk(y) = β1e1 − Lk+y,

r̄k(x) =

(
b
0

)
−
(
A
λkI

)
x, p̄k(y) =

(
β1e1

0

)
−
(
Lk+

λkI

)
y,

where for each k we have x = Wky, y ∈ Rk. We deliberately include the index k in
the notation of the residuals for clarity when discussing their properties throughout
iterations. Using (4), we get

‖rk(x)‖ = ‖pk(y)‖ , ‖rk(x)‖ = ‖pk(y)‖ (7)

for any x = Wky, y ∈ Rk. Moreover, clearly it holds

‖rk(x)‖2 = ‖rk(x)‖2 + λ2
k ‖x‖

2 ,

‖pk(y)‖2 = ‖pk(y)‖2 + λ2
k ‖y‖

2 . (8)
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2.1. Interchangeability of projection and regularization

The above presented Hybrid LSQR applies the so called first project then regu-
larize approach. It is well known that for selected hybrid methods this is equivalent
to the first regularize then project approach, see [4, Chap. 6], even though the
meaning of the equivalency is for various methods slightly different. Here, we briefly
explain why for Hybrid LSQR the two approaches are fully interchangeable. The
important consequence of this relationship is that many properties of LSQR hold
also for Hybrid LSQR with a constant λk.

The first regularize then project approach starts with an application of the
Tikhonov regularization to the original problem, schematically

min
x
{‖Ax− b‖} → min

x

{∥∥∥∥(b0
)
−
(
A
λI

)
x

∥∥∥∥} .
Subsequently, k iterations of the Golub-Kahan bidiagonalization are computed for
the extented problem above yielding the projected problem

min
y∈Rk

{∥∥∥∥(b0
)
−
(
A
λI

)
W ky

∥∥∥∥} , (9)

where W k is an orthogonal basis of Kk

((
A
λI

)T (
A
λI

)
,

(
A
λI

)T (
b
0

))
. This shows the

main disadvantage of the first regularize strategy - the parameter λ must be selected
apriori based on the large problem (1). However, the obtained minimization (9) is
clearly equivalent to

min
y∈Rk

{
∥∥AW ky − b

∥∥2
+ λ2 ‖y‖2}, (10)

thanks to the orthogonality of W k. It remains to show that W k = Wk. From a simple
multiplication and application of shift invariance of Krylov subspaces it follows that

Kk

((
A
λI

)T (
A
λI

)
,

(
A
λI

)T (
b
0

))
= Kk(ATA,AT b).

Thus, the first column of orthogonal matrices Wk and W k is the same and their first
i columns span the same subspace for any admissible i. It follows from the sequential
form of the bidiagonalization process that in such a case Wk = W k. Using (4), the
minimization problem (10) (first regularize then project approach) is equivalent to

min
y∈Rk
{‖Lk+y − β1e1‖2 + λ2 ‖y‖2}.

Consequently, provided λ is the same, the minimization problem is identical to the
one in Hybrid LSQR (5) (first project then regularize approach).

Some further relations can be derived. Similarly to (2) we have(
A
λI

)
Wk = Sk+1Lk+,

(
A
λI

)T

Sk = WkL
T

k ,
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and therefore similarly to (4) we obtain∥∥∥∥(AλI
)
−
(
b
0

)
Wky

∥∥∥∥ =
∥∥Sk+1Lk+y − b

∥∥ =
∥∥Lk+y − β1e1

∥∥ .
The Hybrid LSQR minimization (5) can be thus equivalently written as

min
y∈Rk

{
∥∥Lk+y − β1e1

∥∥}, (11)

where Lk+ has the same properties as Lk+, but its entries depend on λ (unlike
for Lk+). Clearly, for λ = 0 it holds that Lk+ = Lk+.

3. Behavior of residual and solution norms

Recall that we assume x0 = 0. It is well known [11] that then for LSQR the norm
of the solution is strictly increasing,

‖xk+1‖ > ‖xk‖ ,

and the corresponding residual norm is strictly decreasing,

‖rk+1(xk+1)‖ < ‖rk(xk)‖ .

In combination with (6), (7) and the orthogonality of Wk the same holds for the
projected problem, i.e.,

‖yk+1‖ > ‖yk‖ ,
‖pk+1(yk+1)‖ < ‖pk(yk)‖ .

Assume for a moment a constant regularization parameter, i.e., λk = λ for all it-
erations k. It follows from the equivalency between project then regularize and
regularize then project strategy (see Section 2), that the above described properties
of LSQR hold also for Hybrid LSQR. Specifically,

‖xk+1‖ > ‖xk‖ , (12)

‖rk+1(xk+1)‖ < ‖rk(xk)‖ , (13)

and similarly for the residual and solution of the projected problem∥∥yk+1

∥∥ > ‖yk‖ , (14)∥∥pk+1(yk+1)
∥∥ < ‖pk(yk)‖ . (15)

It is useful to recall some properties of the Tikhonov regularization. Consider
the minimization problem (5) for some fixed k. The corresponding solution can be
expressed as a function of the regularization parameter λk as yk(λk). Then

‖yk(λk)‖ is decreasing with increasing λk, (16)

‖pk(yk(λk))‖ is increasing with increasing λk. (17)

For the proof using the SVD decomposition see, e.g., [4].
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3.1. Hybrid LSQR residual monotonicity

Hybrid LSQR minimizes the residual norm (8) which consists of two terms, the
solution norm and the data fidelity term pk(yk). Thus (unlike LSQR) Hybrid LSQR
does not minimize the residual corresponding to the original problem (1). Further-
more, the residual norm can generally oscillate and then it is hard to design a reliable
stopping criterion for the iterations. For large-scale problems direct computation
of ‖rk(xk)‖ may be infeasible. Thus we study the projected residual norm ‖pk(yk)‖
and then take advantage of (7). Stabilization of the inner residual norm can be
used as a marker of stabilization of the method and for setting appropriate stop-
ping criteria. The behavior of ‖pk(yk)‖ for Hybrid LSQR is highly dependent on
the choice of the regularization parameter λk which is often chosen heuristically. We
now investigate the behavior of ‖pk(yk)‖ with respect to the choice of λk.

Let us start with the case of constant regularization parameter, i.e., λk = λ.

Lemma 1. Let yk be the solution of (5) with λk = λ, k = 1, 2, . . .. Then it holds∥∥pk+1(yk+1)
∥∥ < ‖pk(yk)‖ .

Proof. Combining together (15) and (8) yields∥∥pk+1(yk+1)
∥∥2

+ λ2
∥∥yk+1

∥∥2
< ‖pk(yk)‖2 + λ2 ‖yk‖

2 ,

Using (14) then gives the result.

A straightforward corollary of Lemma 1 and the property of Tikhonov regulariza-
tion (17) is that

λk+1 ≤ λk ⇒
∥∥pk+1(yk+1)

∥∥ < ‖pk(yk)‖ .

In other words, if the value of λk is non-increasing, for Hybrid LSQR both ‖pk(yk)‖
and ‖pk(yk)‖ are strictly decreasing (and thus also ‖rk(xk)‖ and ‖rk(xk)‖). Moreover,
it follows from (14) and (16) that

λk+1 ≤ λk ⇒
∥∥yk+1

∥∥ > ‖yk‖ . (18)

In practice, however, the regularization parameter λk is typically increasing rather
then decreasing, because stronger regularization is needed with increasing k as noise
subsequently propagates to the projected problem. In the paper [6], we have shown
that ∥∥yk+1

∥∥ = ‖yk‖ ⇒
∥∥pk+1(yk+1)

∥∥ ≤ ‖pk(yk)‖ .

Thus, also ‖rk+1(xk+1)‖ ≤ ‖rk(xk)‖. In words, stabilization of the inner solution
norm is a sufficient condition for the residual norm to be nonincreasing. Theorem 2
generalizes this and states our main result.
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Theorem 2. Let λk, λk+1 be such that the solutions yk, yk+1 of (5) satisfy
‖yk‖ ≤

∥∥yk+1

∥∥. Then∥∥pk+1(yk+1)
∥∥ ≤ ‖pk(yk)‖ , k = 1, 2, 3, . . . .

Given xk = Wkyk, it also holds that

‖rk+1(xk+1)‖ ≤ ‖rk(xk)‖ k = 1, 2, 3, . . . .

Proof. Denote y∗k+1 = [yTk , 0]T . Then directly
∥∥y∗k+1

∥∥ = ‖yk‖ and∥∥pk+1(y∗k+1)
∥∥ =

∥∥L(k+1)+y
∗
k+1 − β1e1

∥∥ =
∥∥L(k)+yk − β1e1

∥∥ = ‖pk(yk)‖ .

Since yk+1 is a minimizer of (5), we obtain∥∥pk+1(yk+1)
∥∥2

+ λ2
k+1

∥∥yk+1

∥∥2 ≤∥∥pk+1(y∗k+1)
∥∥2

+ λ2
k+1

∥∥y∗k+1

∥∥2
= ‖pk(yk)‖+ λ2

k+1 ‖yk‖
2 .

Because
∥∥yk+1

∥∥2 ≥ ‖yk‖
2, we get

‖pk+1(yk+1)‖2 ≤ ‖pk(yk)‖2

and thus also ‖rk+1(xk+1)‖2 ≤ ‖rk(xk)‖2, see (7).

Let us discuss how to satisfy the condition in Theorem 2. Clearly, by setting
λk+1 = λk = 0 we obtain standard LSQR for which the solution norm is increas-
ing. Generally, it is possible to select the regularization parameter λk+1 such that
‖yk‖ =

∥∥yk+1

∥∥, which also satisfies the condition. In such a case, the value of λk
must be increasing. This holds because if λk was non-increasing, ‖yk‖ would be
increasing, see (18). In summary, Theorem 2 states that in order to maintain the
residual norm ‖rk(xk)‖ decreasing, λk can be increasing but not too much. Provided
monotonicity of the residual norm can then simplify the detection of stabilization
of the regularization process. It is also important to note that the assumption in
Theorem 2 is sufficient but not necessary.

4. Numerical experiments

Now we illustrate the above presented behavior in finite precision arithmetic. We
consider two standard benchmark discrete ill-posed problems from the Regulariza-
tion toolbox in MATLAB. For simplicity, a fixed number of iterations k is computed.
The 1D problem gravity with A ∈ R50×50 and the noise level η = 10−3 is solved in 30
iterations. For the 2D problem blur with A ∈ R2500×2500, η = 10−1 and the Gaussian
blur parameter σ = 1, we compute 50 iterations. The parameter λk for the Tikhonov
regularization is chosen from 1000 samples logarithmically distributed in the inter-
val (0.0001, 10). We use the L-curve criterion [4, Chap. 5] for the gravity problem
and the prescribed norm criterion [6] for the blur problem.
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Figure 1: Comparison of approximate solutions of blur computed by Hybrid (left)
and pure (middle) LSQR in 50 iterations. Hybrid method clearly provides a better
reconstruction of the exact solution (right).

Figure 2: Regularization parameters λk computed for the two studied problems (left
and middle). As expected, λk is mostly increasing. The right image illustrates
significant loss of orthogonality among the columns of Wk for the gravity problem.

The effect of the inner regularization on improvement of the approximation is
illustrated in Figure 1 comparing Hybrid LSQR and LSQR approximations for the
problem blur. Figure 2 (left) then shows the corresponding regularization parame-
ters λk determined during Hybrid LSQR. As expected, λk is non-decreasing and in
latter iterations it stabilizes. The middle figure shows analogous behavior for the
gravity problem. The effect is present despite the serious loos of orthogonality be-
tween the constructed bidiagonalization vectors, see the figure on the right. Figure 3
provides norms of the computed approximate solutions and the corresponding resid-
uals for both testing problems. Their behavior corresponds nicely to the presented
theory. If the solution norm increases, the residual norm is decreasing. A detailed
view given in figures on the right for gravity shows, that from iterations 12 to 13
and 14 to 15 the solution norm decreases. Even though the assumption of Theorem 2
does not hold here, the corresponding residual norm still decreases from iteration 12
to 13 (but increases from iteration 14 to 15). This illustrates that the assumption is
sufficient but not necessary. Note also how small the discrepancy is between the inner
and outer residual and solution norms in finite precision, despite the severe loss of or-
thogonality. This property of Hybrid methods is explained in details in [5, Chap. 5]
and [6]. If necessary, several re-orthogonalization strategies can be applied to im-
prove orthogonality of the computed bidiagonalization vectors. For comparison, we
illustrate the behavior when full re-orthogonalization (against all previous vectors)
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Figure 3: Behavior of the norm of the computed solutions and the corresponding
residuals for the two studied problems. The right images show in detail several
iterations for the gravity problem.

Figure 4: Illustration of the effect of re-orthogonalization. Orthogonality among the
columns of Wk is at the machine precision (left). The discrepancy between the inner
and outer norms is negligible (middle and right). Compare to Figure 3.

is applied on both sets Wk and Sk, see Figure 4. The orthogonality between the
columns of Wk is at the machine precision (left figure). Consequently, the inner and
outer solution norms match and the residual norms behave similarly as we observed
in computations without re-orthogonalization.
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Abstract: The real options approach interprets a flexibility value, embedded
in a project, as an option premium. The object of interest is to valuate real
options to change operating scale, typical for natural resources industry. The
evolution of the project as well as option prices is decribed by partial differen-
tial equations of the Black-Scholes type, linked through a payoff function given
by a type of the flexibility provided. The governing equations are discretized
by the discontinuous Galerkin method over a finite element mesh and they
are integrated in temporal variable by an implicit Euler scheme. The special
attention is paid to the treatment of early exercise feature that is handled by
additional penalty term. The capabilities of the approach presented are docu-
mented on the selected individual real options from the reference experiments
using real market data.

Keywords: real option, option pricing, American option, partial differential
equation, discontinuous Galerkin method, penalty method
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1. Introduction

The real options approach plays an important role in the decision making pro-
cess, because it provides a solution to the optimal investment decision that captures
the flexibility value embedded in a project. As a result, this methodology enables
to recognize the important qualitative and quantitative characteristic of some of the
intrinsic attributes of the investment opportunities, namely, irreversibility of invest-
ments, choice of timing and last but not least uncertainty of the future rewards from
investments, see [3]. The foundations of this modern investment theory were laid
more than four decades ago by linking valuation of investment opportunities as pric-
ing of financial options on real assets, see the pioneering paper by Myers [12]. Due to
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the analogy with an option on financial asset, the methodology has become known
as real options approach that interprets the flexibility value as the option premium.
Since then, a large number of various solution techniques have been developed, from
a simulation approach, over dynamic programming to contingent claims analysis,
see [11] for a brief overview.

In this contribution we deal with real options valuation arising in natural re-
sources industry, especially options to change operating scale. Following a contingent
claim analysis [3] the values of both the project and the embedded flexibility, ex-
pressed as functions of time and underlying output price (following a stochastic pro-
cess), can be identified as solutions of relevant partial differential equations (PDEs) of
the Black-Scholes type. More precisely, the link between project and flexibility values
is realized through a payoff function, which is enforced with respect to the flexibility
type at any time prior to or at expiration date. Taking into account our recent re-
sults on pricing of conventional financial options, see, e.g., [5] and [6], a discontinuous
Galerkin method (DGM) with an implicit time stepping scheme is applied to solve
the relevant governing equations and to improve the numerical pricing valuation as
a whole.

The concept of the paper is based on the contributions in proceedings [7] and [8],
where options to expand and options to contract were studied in a separate way.
The aim is to provide readers the methodological insight to real options pricing
issues, documented on simplified case studies. First, the relevant PDE models are
formulated, describing a value of the project as well as the option as the solution
of the terminal-boundary value problem. Next, a numerical valuation scheme is
presented. Finally, a simple numerical experiment, arising from an iron ore mining
industry and related to reference data [9] and [10], is provided.

2. PDE models

Consider a one-stage investment project to change (i.e., expand or contract) the
production of some output commodity. More precisely, such an investment project
has an embedded option to expand the production rate or an embedded option
to contract the production rate, exercisable any time prior to or at prespecified
time T > 0 and requiring the additional implementation cost K > 0. In terms
of conventional financial options, the situation is described by a call option (on
expansion) or a put option (on contraction) under American exercise right with
strike K and maturity date T .

Next, we recall valuation models from [9] and [10] to price the embedded option
as well as the project itself. We assume that project/option values can be expressed
as functions of the actual time t and the output commodity price P following a ge-
ometric Brownian motion (proposed in [2]):

dP (t) = (r − δ)P (t)dt+ σP (t)dW (t), P (0) > 0, (1)

where r > 0 is the risk-free interest rate, δ > 0 is the mean convenience yield on
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holding one unit of the commodity, W (t) is a standard Brownian motion and σ > 0
is the volatility of the commodity price.

Further, we denote by V0(P, t) the value of the project, which does not have any
options to change operating scale. In contrast, the function V1(P, t) stands for the
value of an investment project with the embedded option to expand (or contract) the
production rate. Let T ∗ > T be the maximum lifetime of both projects and ϕ0(P, t)
and ϕ1(P, t) represent (after-tax) cash flow rates associated with the given project.
Intuitively, from the definitions above we expect that

V1(P, T ∗) = V0(P, T ∗) = 0, P ≥ 0, (2)

ϕ1(P, t) = ϕ0(P, t), P ≥ 0, t ∈ [0, T ). (3)

Following [1] one can characterize value functions V0 and V1 between expiry date T
and project lifetime T ∗ as solutions of a couple of deterministic backward PDEs:

∂Vi
∂t

+
1

2
σ2P 2∂

2Vi
∂P 2

+ (r − δ)P ∂Vi
∂P
− rVi︸ ︷︷ ︸

LBS(Vi)

= −ϕi, (4)

for P ∈ (0,∞), t ∈ [T, T ∗) with the terminal conditions (2).
In what follows we present the governing equation for the embedded flexibility

representing the value added to the project function, i.e., V1(P, t) ≥ V0(P, t) for
all P ≥ 0 and t ∈ [0, T ). More precisely, we set F (P, t) = V1(P, t) − V0(P, t) as the
option value at the current price P and actual time t ∈ [0, T ). In view of the notation
above, it is possible to track values of both projects and the embedded option value
simultaneously within one timeline on [0, T ), that are linked at the expiry date T
through the function

Π(P ) ≡ max(V1(P, T )− V0(P, T )−K, 0) = Π(V1(P, T ), V0(P, T )), P ≥ 0, (5)

which plays the role equivalent to a payoff function with strike K, well-known from
financial options pricing.

Further, taking into account an equivalence of cash flow rates (3) and encompass-
ing the early exercise constraint of American options, i.e.,

F (P, t) ≥ Π(V1(P, T ), V0(P, T )), P ≥ 0, t ∈ [0, T ), (6)

the value function F satisfies the so-called moving-boundary problem, where it is
also necessary to determine exercise and continuation regions separated by a free
boundary driven by the optimal exercise price P ∗(t), see [13].

There are several approaches how to handle the early exercise feature, among
the widely used ones, just penalty techniques [14] allow us to reformulate moving-
boundary problem as follows

∂F

∂t
+ LBS(F ) + qF = 0, P ∈ (0,∞), t ∈ [0, T ), (7)
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where an additional nonlinear source term qF is defined to ensure American con-
straint (6) and satisfy the conditions:

qF (P, t) = 0, if F (P, t) > Π(P ), qF (P, t) > 0, if F (P, t) = Π(P ). (8)

Note that the penalty approach can be unified for both European and American
exercise features, if we put qF (P, t) = 0 in (7) for all P > 0 and t ∈ [0, T ) in the case
of a European exercise right.

3. DG approach

In order to determine the present value of flexibility to expand/contract the
production rate, it is necessary to proceed in backward induction, from a pair of
project value functions V0 and V1, over a construction of the payoff function Π,
to the real option value function F . Since there are no analytical formulae for
finite maturity American options in general, the valuation should rely on numerical
approaches. The proposed valuation methodology is based on DGM, successfully
used in the field of financial option pricing, see, e.g., [5] and [6].

At first, we localize the governing equations to a bounded interval Ω = (0, Pmax),
where maximal commodity price satisfies Pmax > P ∗(t) for all t ∈ [0, T ). Then,
we have to impose project as well as option values at both endpoints P = 0
and P = Pmax. The project values are estimated by the net present value approach
for the given cash flow rates as follows

Vi(z, t) =

∫ T ∗

t

ϕi(z, ξ)e
−r(ξ−t)dξ, z ∈ {0, Pmax}, t ∈ [T, T ∗), i = 0, 1. (9)

The real option value has to reflect the type of flexibility that this option provides.
In accordance with the European exercise right, we prescribe a couple of Dirichlet
boundary conditions in the form

F (0, t) = 0, F (Pmax, t) = e−r(T−t)Π(Pmax), (expansion)

F (0, t) = e−r(T−t)Π(0), F (Pmax, t) = 0, t ∈ [0, T ). (contraction)
(10)

Moreover, in the case of American options, boundary conditions (10) have to be set
in the accordance with the early exercise feature which leads to the elimination of
the discounted factor e−r(T−t) in (10).

Secondly, to handle the American early exercise feature and force the solution
of (7) not to fall below its payoff function at any time t ∈ [0, T ), we introduce (as
in [6]), for a sufficiently regular function v, the variational form of penalty term qF as

(qF (t), v) = cp

∫
Ω

χexe(t)
(

Π(P )− F (P, t)
)
v dP, (11)

where (·, ·) denotes in fact the inner product in L2(Ω). The function χexe(t) in (11)
is defined as an indicator function of the exercise region at time instant t and cp > 0
represents a weight to enforce the early exercise.
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The cornerstone of the method applied is to construct a numerical solution as
a composition of piecewise polynomial, generally discontinuous, functions on a spatial
mesh without any requirements on the continuity of the solution across the partition
nodes. We introduce the finite dimensional space

Sph = {vh ∈ L2(Ω) : vh|(Pl,Pl+1) ∈ P p((Pl, Pl+1)), 0 ≤ l < N}, (12)

defined over the partition 0 = P0 < P1 < . . . < PN = Pmax of the domain Ω
with the assigned mesh size h. Similarly as in [6], we carried out the DG spatial
semi-discretization and temporal time discretization using an implicit Euler scheme.
As a result, we obtain a sequence of linear algebraic problems related to a time
partition T ∗ = t0 > t1 > · · · > tR = T > tR+1 > · · · > tM = 0 with fixed

time step τ = T ∗/M . Further, denote u
(i)
h,m ∈ Sph, i = 0, 1, the approximation of

the corresponding project value functions Vi from (4) at time level tm ∈ [T, T ∗],
m = 0, . . . , R. Similarly, we define the DG approximate solution of problem (7)
as functions wmh ≈ F (·, tm), tm ∈ [0, T ], m = R, . . . ,M . Starting from zero initial

project values u
(0)
h,0 and u

(1)
h,0, the desired value of flexibility wMh ≈ F (·, 0) is computed

in the following three steps(
u

(i)
h,m+1, vh

)
− τAh

(
u

(i)
h,m+1, vh

)
=
(
u

(i)
h,m, vh

)
− τ`(i)

h (vh)(tm+1) (13)

+τ (ϕi(tm+1), vh) ∀ vh ∈ Sph, m = 0, 1, . . . , R− 1, i = 0, 1,

(
wRh , vh

)
=
(

Π
(
u

(1)
h,R, u

(0)
h,R

)
, vh

)
∀ vh ∈ Sph, (14)

(
wm+1
h , vh

)
− τAh

(
wm+1
h , vh

)
+ τQh

(
wm+1
h , vh

)
= (wmh , vh) (15)

−τ`h(vh)(tm+1) + τqh(vh)(tm+1) ∀ vh ∈ Sph, m = R, . . . ,M − 1,

where the bilinear form Ah(·, ·) stands for the discrete variant of the operator LBS

from (4). The linear forms `
(i)
h (·)(t) and `h(·)(t) are associated with boundary

conditions (9) and (10), related to the particular project value Vi and the option
value F , respectively. Further, the treatment of the American constraint leads to
new forms Qh(·, ·) and qh(·)(t) in scheme (15), defined as discrete variants of the
bilinear and linear part of (11), respectively. For the detailed derivation of the
above-mentioned forms we refer the interested reader to [5].

Moreover, for practical purpose, to evaluate forms Qh and qh we use

χexe(tm)
∣∣
[Pl,Pl+1]

≈ χ̃exe(tm)
∣∣
[Pl,Pl+1]

:=

{
1, if wm−1

h

(
P l+1

c

)
< wRh

(
P l+1

c

)
0, if wm−1

h

(
P l+1

c

)
≥ wRh

(
P l+1

c

) (16)

for tm ∈ [0, T ), 0 ≤ l ≤ N − 1, where P l+1
c is the midpoint of the interval

[Pl, Pl+1] and wRh is given as Sph-approximation of the payoff function Π depending

on states u
(i)
h,R, i = 0, 1, see (14).
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4. Numerical experiments

In this section, we briefly illustrate the usage of the DG approach on idealized case
studies from the iron ore mining industry. The three-step valuation scheme (13)–(15)
is implemented in the solver Freefem++, incorporating GMRES as a solver for non-
symmetric sparse systems, for more details, see [4].

As in [9] and [10] we consider iron ore mine, having the value given by the
function V0(P, t), that depends on commodity price P , expressed in USD per dry
metric tonne (dmt) of iron ore. Further, we have a mining project of value V1(P, t),
adopting the embedded option F (P, t) to scale up (or down) the production rate any
time t ∈ [0, T ]. Let Q denote the total reserve of the iron ore mine (in thousands of
million dmt) and qi(t) ≥ 0, i = 0, 1, be the iron ore production rates (in thousands
of million dmt per year) associated with projects Vi, i = 0, 1. Depending on how
the mine is operated, project lifetimes are defined as minimum admissible values T0

and T1 (in years) that satisfy the relationship

Q =

∫ T ∗
0

0

q0(ξ)dξ =

∫ T ∗
1

0

q1(ξ)dξ, (17)

where

q0(t) =

{
s(t), if t ∈ [0, T ∗0 ),
0, if t ∈ [T ∗0 , T

∗],
q1(t) =


s(t), if t ∈ [0, T ),
κ · s(t), if t ∈ [T, T ∗1 ),
0, if t ∈ [T ∗1 , T

∗],
(18)

for s(t) corresponding to the production rate related to the project having no embed-
ded options and factor κ > 0 representing the extracted (κ > 1) or contracted (κ < 1)
mining production rate. Further, we define the after-tax cash flow rates of relevant
projects as follows

ϕi(P, t) = qi(t)
(

(1−D)P − c(t)
)

(1−B), i = 0, 1, (19)

for P ∈ [0, Pmax] and t ∈ [0, T ∗], where c(t) is the average cash cost rate of iron ore
production per dmt, D is the rate of state royalties and B is the income tax rate.
The numerical experiments are performed on the following (reference) project and
market data:

Q = 10, s(t) = 0.1 e0.007t, D = 0.05, B = 0.3,

c(t) = C0e
0.005t, C0 > 0, r = 0.06, δ = 0.02,

(20)

which are the representatives of parameter values of practical significance.

4.1. European expansion option

Referring to [9] we price an expansion option exercisable only at maturity date
T = 2 under discretization parameters p = 2, Pmax = 100, h = 1 and τ = 0.02.
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Figure 1: The approximate option values (in 109 USD) for different scenarios (top)
and the corresponding Delta values (bottom).

Further, we take C0 = 35 USD (based on prices from 2007) and the implementation
cost to double production (κ = 2) is set as K = 10, given in 109 USD. Using (17), (18)
and (20), easy calculation leads to T ∗

.
= 75.8 and T ∗1

.
= 43.6.

Consistent with the referenced experiment we investigate the behaviour of the
option values for various values of volatility. Figure 1 (top) records flexibility val-
ues at present time (t = 0) for all scenarios considered. One can easily observe
that plots are similar to the conventional financial European call options with the
relevant Black-Scholes model parameters. Moreover, piecewise quadratic DG approx-
imations match well the reference values (evaluated at underlying reference prices)
and give fairly the same results as the upwind finite difference methods from [9].
More precisely, we can deduce that option values seem to be an increasing function

81



of volatility σ in the region of low commodity prices (i.e., for less than some critical
value). On the other hand, in the case of high commodity prices, the situation is
quite opposite and the most valuable option is the one with the smallest volatility
(σ = 0.2). This intuitive expectation is well illustrated in Figure 1 (bottom), where
the corresponding Delta sensitivity measures, ∆M

h ≈ ∂F
∂P

(·, 0), are depicted. At first
glance, the most sensitive flexibility value with respect to the commodity price is
related to the low volatility scenario, because in this case the commodity price has
little chance to fluctuate. From this point of view, we come to the same conclusions
as in the paper [9].

4.2. American contraction option

Secondly, we price a contraction option exercisable any time prior to or at T = 1
under discretization parameters p = 2, Pmax = 60, h = 0.6, τ = 0.01 with early
exercise weight cp = 10/τ . As in [10] we set C0 = 25 USD (prices from 1988) and
the implementation cost K = 1−κ (given in 109 USD) and investigate the behaviour
of the option values with the fixed volatility σ = 0.3 for various contraction factors
under American as well as European exercise rights. The lifetime T ∗1 is determined
in a similar way as in preceding experiment for various κ. The approximate option
values at present time for selected contraction factors are depicted in Figure 2 (top).
Analogously to the previous experiment, plots are similar to the conventional finan-
cial put options and illustrate an intuitive expectation that the value of flexibility to
contract F is a decreasing function of the factor κ in the region of low commodity
prices. Moreover, it is apparent for all cases that American options cost more than
their European counterparts, i.e., early exercise feature increases value of the project
flexibility. This distinctive feature of American options is also well resolved by Delta
measures in Figure 2 (bottom), i.e., |∆M

h (Am)| ≥ |∆M
h (Eu)| for a particular κ. Thus,

these observations are in good agreement with the expectations of practitioners.

5. Conclusion

The real options approach and especially related valuation techniques pose a very
challenging part of corporate finance. In this paper we have recalled PDE models
to valuation of investment projects together with the embedded flexibility of a one-
stage expansion or contraction of the production rate. The particular governing
equations were solved by a numerical scheme based on DGM. The presented nu-
merical experiments, arising from the iron ore mining industry, provides financially
meaningful results and thus illustrates a suitability of DGM for real options pricing
issues that take into account fluctuations in commodity prices as well as different
expansion/contraction factors. One possible future research objective should be ad-
dressed to extend the DG approach to advanced combinations of options to change
operating scale incorporated into a compound option that enables to properly cap-
ture changing investment strategies in a long time horizon.
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and the corresponding Delta values (bottom) under European and American con-
straints.
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under project 22-17028S. The support is greatly acknowledged. Furthermore, the
second author also acknowledges the support provided within SP2022/4, an SGS
research project of VSB-TU Ostrava.

References

[1] Black, F. and Scholes, M.: The pricing of options and corporate liabilities. J.
Polit. Econ. 81 (1973), 637–659.

83



[2] Cortazar, G., Schwartz, E., and Casassus, J.: Optimal exploration investments
under price and geological-technical uncertainty: a real options model. R&D
Manage. 31 (2001), 181–189.

[3] Dixit, A. and Pindyck, R.: Investment Under Uncertainty. Princeton University
Press, Princeton, 1994.

[4] Hecht, F.: New development in freefem++. J. Numer. Math. 20 (2012), 251–
265.
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[7] Hozman, J. and Tichý, T.: Numerical valuation of the investment project with
expansion options based on the PDE approach. In: R. Hlavatý (Ed.), Proceed-
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Abstract: This work deals with the flow of incompressible viscous fluids in
a two-dimensional branching channel. Using the immersed boundary method,
a new finite difference solver was developed to interpret the channel geometry.
The numerical results obtained by this new solver are compared with the
numerical simulations of the older finite volume method code and with the
results obtained with OpenFOAM. The aim of this work is to verify whether
the immersed boundary method is suitable for fluid flow in channels with more
complex geometries with difficult grid generation.
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1. Introduction

Fluid flow in the system of branching channels is a part of many technical or
biological applications, for example blood flow in the fine and complex branching of
the cardiovascular system. This work is focused on the flow of blood in the venous
system, for simplification it is possible to consider blood flow as flow of incompressible
viscous fluid in branching channels.

The network of such a branching system can be imagined as a main channel
followed by multilevel branching, and each of these new branches can have a different
diameter and can be connected to the main channel at a different angle.

Complex formation of the channel system causes problems related to the descrip-
tion of the geometry, its mesh generation, and the mathematical formulation of the
related problem, including appropriate boundary conditions. The description of the
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channel geometry can be done using the standard grid generation inside the channel.
A grid can be either structured or unstructured. This approach is quite common,
but it is associated with certain disadvantages. This includes the difficulty of mesh
generation and the need to re-generate the mesh in case of even small geometric
modifications. Also, CFD solvers for general unstructured grids are more complex,
making it difficult to implement any non-standard mathematical models or boundary
conditions.

Some problems that arise when using classical methods on grids inside the area
(limited by the channel boundary) can be avoided by adopting the immersed bound-
ary method. In this case a larger area of space is discretized, e.g. the rectangle
enclosing the tested branch channel. A grid (Cartesian grid) is constructed through-
out such a domain, where model equations are also solved. The specific geometry
of the channel is represented only at the level of the mathematical model used, one
model in the region occupied by the fluid and another elsewhere. Switching between
models is simply implemented using a characteristic function specifying the inner
and outer parts of the considered channel. In this case, due to the very simple grid
structure and domain shape, the CFD solver can be very simple. Any changes in
the geometry of the channel are easily solved, it is only necessary to redefine the
characteristic function describing the fluid region.

The aim of this work is to compare the results of a standard method based on
finite volumes, which uses the grid built inside the channel, i.e. the grid bounded by
the channel edges, with a much simpler finite difference code working on the regular
Cartesian grid using a general implementation of the immersed boundary method.
A simple straight channel with one branch inclined at different angles was chosen as
the test case.

2. Mathematical model

The fundamental system of equations is the system of Navier–Stokes equations
for incompressible Newtonian fluids. This system is based on the balance laws of
mass and momentum for incompressible fluids

div u =0 (1)

ρ

(
∂u

∂t
+ div(u⊗ u)

)
=−∇P + µ∆u, (2)

where P is the pressure, ρ is the constant density, u is the velocity vector and µ
represents the constant dynamic viscosity.

3. Numerical methods

The numerical methods which solve the system of incompressible Navier-Stokes
equations can be divided according to velocity-pressure coupling stategy into two
main groups, coupled methods (e.g. artificial compressibility and dual time-stepping
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methods) and pressure correction methods (including e.g. SIMPLE or PISO algo-
rithms). The SIMPLE algorithm [11, 12] is the main method used for the numerical
solution of incompressible fluid flow problems (also due to its ability to treat unsteady
flows). This algorithm is included in Open source Field Operation And Manipulation
(OpenFOAM) and is described in detail in [7, 14].

The artificial compressibility method (designed to treat steady flows) was used
in our in-house built FDM and FVM codes. This method [4, 6] is used to obtain
equation for pressure. It means that the continuity equation is completed by a pres-
sure time derivative term ∂p

β2∂t
, where β is a positive parameter, making the inviscid

part of the system of equations hyperbolic. The parameter β for the steady case is
chosen approximately equal to the maximum velocity in the domain.

3.1. Finite difference method

The finite difference approximation of the governing system of equations (1)
and (2) is a natural choice because of the use of immersed boundary method on
Cartesian grids. In such case the discretization is simple, allowing for easy imple-
mentation and modification of various numerical methods and algorithms.

The system including the modified (for artificial compressibility) continuity equa-
tion (1) and the momentum equation (2) can be written in vector form as [1]:

DβWt + Fx + Gy = Rx + Sy, (3)

where Dβ = diag

(
1

ρβ2
, 1, 1

)
, W = col(p, u, v) is the vector of unknowns,

F =

 u
u2 + p
vu

 , G =

 v
uv

v2 + p

 , R =

 0
νux
νvx

 , S =

 0
νuy
νvy

 (4)

where p is the kinematic pressure (p = P/ρ), u, v are velocity components and ν is
the kinematic viscosity.

3.1.1. Immersed boundary method

In computational fluid dynamics, the immersed boundary method was first used
in reference to the method developed by Charles Peskin in 1972 (see [13]) to simulate
fluid-structure interactions.

A characteristic feature of this method is that the numerical simulation of fluid
flow is performed on Cartesian grid that does not have to directly copy the geometry
of the computational (fluid) domain, see e.g. [3, 10]. The situation can be described
using the schematic sketch (shown in Fig. 1) of the grids used for Finite Volume
Method (FVM) and Finite Difference Method (FDM) in this work. The structured
grid used in FVM simulations has a simple structure with the grid lines fitted to
boundaries of the computational domain. This results in grids that are aligned to
boundaries. This situation is shown in Fig. 1 (a).
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(a) Grid for FVM (b) Grid for FDM with the immersed geometry

Figure 1: Detail of the grid for finite-volume and finite-difference simulations.

In the immersed boundary FDM method, the governing system of equations is
discretized in the whole rectangular domain and used boundary conditions are only
imposed on its boundary. The unknown values of velocity and pressure are sought in
all internal points of the domain, distinguishing the points inside of the fluid domain
(marked by white color in Fig. 1 (b)) and inside of the solid domain (marked by gray
color in Fig. 1 (b)). The velocity fields in the solid domain is set to zero, so that the
governing equations are only solved in the points in the fluid region, see e.g. [3, 8].

3.1.2. MacCormack scheme

In computational fluid dynamics, the MacCormack method is a widely used dis-
cretization method for the numerical solution of hyperbolic partial differential equa-
tions. This second-order finite difference method was introduced by Robert W. Mac-
Cormack in 1969 [9]. It is the method written in the predictor-corrector form using
asymmetric forward/backward discretization stencil to approximate spatial deriva-
tives to provide finally a central (second order) approximation.

To describe the MacCormack scheme, rearrange equation (3) to the form where
all terms except the time derivative are placed on the right hand side

Wt = D−1
β [− (Fx + Gy) + νD∆W] , νD∆W = Rx + Sy. (5)

To update in time the values of the vector Wn to Wn+1 an approximation of Wt

is constructed from (5). This approximation is built differently, asymmetrically, in
predictor (e.g. with backward differences) and in corrector (by forward differences).
The final update is performed using linear combination of the two values obtained.
The expressions for predicted and corrected values are shown in (6) and (7).

W̃i,j =Wn
i,j + ∆tD−1

β

[
−

Fn
i,j − Fn

i−1,j

∆x
−

Gn
i,j −Gn

i,j−1

∆y

+ νD

(
Wn

i+1,j − 2Wn
i,j + Wn

i−1,j

∆x2
+

Wn
i,j+1 − 2Wn

i,j + Wn
i,j−1

∆y2

)]
(6)
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Wn+1
i,j =

1

2

(
Wn

i,j + W̃i,j

)
+

∆t

2
D−1

β

[
−

F̃n
i+1,j − F̃n

i,j

∆x
−

G̃n
i,j+1 − G̃n

i,j

∆y
(7)

+ νD

(
W̃n

i+1,j − 2W̃n
i,j + W̃n

i−1,j

∆x2
+

W̃n
i,j+1 − 2W̃n

i,j + W̃n
i,j−1

∆y2

)]
. (8)

3.2. Finite volume method

In this work the finite volume discretization is used as a reference for comparison
and validation of the newly developed finite-difference solver. Within the presented
study, the finite volume method was used in two codes. First, in an in-house devel-
oped simple 2D code, and second, in OpenFOAM.

The spatial discretization is based on the cell-centered finite volume approxima-
tion on a multi-block structured grid. While the mesh is handled as block structured
by the in-house solver, the same grid is treated as unstructured by OpenFOAM. The
finite volumes are quadrilaterals in 2D. For the in-house code the central scheme
is used for convective terms, including the pressure gradient calculated from the
approximation. The viscous terms are also discretized in the central way on dual
quadrilateral mesh (diamond type scheme), see Fig. 2.
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Figure 2: Grid configuration for approximation of inviscid and viscous fluxes.

The resulting semi-discrete system of ODEs (based on (5)) is integrated in time
by the explicit multistage Runge–Kutta scheme:

W
(0)
i,j = Wn

i,j

W
(r+1)
i,j = W

(0)
i,j − α(r)

∆tLW
(r)
i,j r = 1, . . . , s (9)

Wn+1
i,j = W

(s)
i,j
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The three-stage explicit Runge-Kutta scheme used to obtain results presented here
had coefficients: α

(1)
= 1/2, α

(2)
= 1/2, α

(3)
= 1. More details on this type of

finite volume discretization and associated Runge-Kutta methods can be found, e.g.,
in [1, 2, 5].

OpenFOAM uses a co-located grid, i.e., the fluid dynamic quantities are all stored
at the control volumes centroids. The convective terms are discretized using the
central difference scheme and also for the viscous fluxes the central differences are
used. In this case, however, due to grid curvature an extra correction term (for
non-orthogonality) is added to the discretization, subject to certain limiter, for more
details see [11].

4. Numerical tests

The numerical results shown in this section are used to compare different nu-
merical methods to verify that the newly developed immersed boundary method
is sufficiently accurate. At the same time, the flow at the branching point of the
channel was also tested depending on the connection angle of the secondary branch.

4.1. Domain geometry

For the immersed boundary implementation of finite-difference method, the 2D
computational domain was chosen as a rectangle in x − y plane with dimensions
30D × 10D. The numerical simulations were performed on the structured (Carte-
sian) grid with different number of equidistant nodes.

The used domain is shown in Fig. 3. The diameter of the main channel is denoted
by symbol D and D = 0.006 m and the width of the branch inclined at the angle
α was chosen to be D/2. The same configuration was kept for all simulations, just
changing the angle α by setting it to values 30◦, 60◦, 90◦, 120◦ and 150◦. For finite
volume simulations, just the interior of the channel (marked by white color in Fig. 3)
was used to construct the grid.

y

x

O A

B

α

15D 15D

8D D/2

D

D

Figure 3: Computational domain of a planar branching channel.
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4.2. Boundary conditions

Boundary conditions were chosen in such a way, that the flow is driven by the
prescribed pressure drop between the inlet and outlet parts of the boundary. So only
different values of pressure were prescribed at inlet (pin = 60 Pa) and in outlet parts
(pA = pB = 0 Pa) of the boundary. Otherwise the homogeneous Neumann condition
was prescribed for velocity components on those parts of boundary to mimic a fully
developed flow. On the channel wall of course the no-slip, i.e., homogeneous Dirichlet
condition u = (0, 0) was prescribed for velocity.

4.3. Numerical results

The aim of presented numerical results is to demonstrate the applicability of the
chosen methods and their settings for the considered class of problems. The newly
developed FD method based immersed boundary code is compared with an in-house
finite volume code (both using artificial compressibility approach) and the open-
source OpenFOAM finite volume code (using a variant of SIMPLE algorithm). Both
FVM codes share the same computational grid. For the FDM method with immersed
boundary channel representation two different grids were used. The coarser grid had
resolution 1200×200 cells, while the finer grid doubled the number of cells in the
vertical y direction, i.e., having 1200×400 cells.

Figs. 4 and 5 show the comparison of pressure and velocity fields obtained using
all the considered codes for the case of oblique branching at angle α = 30◦. The
pressure fields in Fig. 4 have very similar character and except the FDM results on
coarse grid all results are almost identical. The comparison of velocity magnitude
fields in Fig. 5 reveals that the in-house FVM code and FDM code on the finer grid
provide almost identical results. The OpenFOAM results predict a bit higher velocity
in the main channel, while the FDM code on coarse grid predicts lower velocity.

It is interesting to see that the level of agreement between the results changes for
different angles α of the secondary branch. The comparison of pressure and velocity
fields in the case of α = 60◦ is shown in Figs. 6 and 7. Here it seems that the
OpenFOAM results are closest to the FDM on the finer grid.

The comparison of results in the case of α = 90◦ (shown in Figs. 8 and 9)
shows that even the results obtained by FDM on the coarse grid are almost identical
to the other methods. The orthogonality of the grid allows for optimal use of all
computational points and leads to highest accuracy of numerical approximation.

Similar results were obtained for the remaining two tested angles, α = 120◦ and
α = 150◦ (not shown here). Also here the mutual agreement between the finer grid
of immersed boundary method and the in-house code can be seen.

Similar comparison for cases with different branching angle α is shown in pre-
sented Figs. 4-9 for finite volume method (in-house code and OpenFOAM with SIM-
PLE algorithm) and finite difference method (coarse and finer grid). The mutual
agreement between the finer grid for FDM and in-house FVM code depends on the
angle α, with best results (smallest solution differences) achieved for angles close to
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(a) α = 30◦ - FDM - coarse grid (b) α = 30◦ - FDM - finer grid

(c) α = 30◦ - FVM - in-house code (d) α = 30◦ - FVM - OpenFOAM

Figure 4: Pressure field in detail for the case α = 30◦, different solvers and grids.

(a) α = 30◦ - FDM - coarse grid (b) α = 30◦ - FDM - finer grid

(c) α = 30◦ - FVM - in-house code (d) α = 30◦ - FVM - OpenFOAM

Figure 5: Velocity magnitude in detail for the case α = 30◦, different solvers and
grids.
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(a) α = 60◦ - FDM - coarse grid (b) α = 60◦ - FDM - finer grid

(c) α = 60◦ - FVM - in-house code (d) α = 60◦ - FVM - OpenFOAM

Figure 6: Pressure field in detail for the case α = 60◦, different solvers and grids.

(a) α = 60◦ - FDM - coarse grid (b) α = 60◦ - FDM - finer grid

(c) α = 60◦ - FVM - in-house code (d) α = 60◦ - FVM - OpenFOAM

Figure 7: Velocity magnitude in detail for the case α = 60◦, different solvers and
grids.
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(a) α = 90◦ - FDM - coarse grid (b) α = 90◦ - FDM - finer grid

(c) α = 90◦ - FVM - in-house code (d) α = 90◦ - FVM - OpenFOAM

Figure 8: Pressure field in detail for the case α = 90◦, different solvers and grids.

(a) α = 90◦ - FDM - coarse grid (b) α = 90◦ - FDM - finer grid

(c) α = 90◦ - FVM - in-house code (d) α = 90◦ - FVM - OpenFOAM

Figure 9: Velocity magnitude in detail for the case α = 90◦, different solvers and
grids.
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α = 90◦, while in the case α = 30◦ (and α = 150◦, not shown here) the differences
are more pronounced.

5. Conclusions

A new numerical code was developed based on a finite difference method using
the immersed boundary approach, which was applied to the numerical simulation of
the flow of viscous incompressible fluid in planar branching channels.

The numerical results were presented in this work showed that the results ob-
tained by the newly developed code are comparable to the results provided by the
previously used code based on the finite volume method and also to the results from
the open-source package OpenFOAM.

The dependence of the immersed boundary method on the grid resolution was
found, especially during numerical simulations in channels with oblique branching.
In the case of a perpendicular connection, the differences between coarser and finer
grids were not so large. Although the results obtained on the coarse and finer grids
are qualitatively very similar (showing the same flow structure), some quantitative
parameters (such as the maximum velocity or discharge) may differ.

In the presented comparison, a simple pressure-based setup was chosen, where the
flow is controlled only by the prescribed pressure differences between the inlet/outlet
boundaries of the channel branches. Such setup is very sensitive to the numerical
method, the grid structure, and the way the boundary conditions are imposed. This
sensitivity is due to the fact that the flow in the channel branches is unknown in
advance, and the flow field develops only due to the pressure difference. In this
context, the agreement between the numerical predictions of the three considered
methods and codes can be evaluated as satisfactory.

Our future work will focus on the extension of the presented comparison for un-
steady flows and non-Newtonian fluids, which is crucial for the intended investigation
of various biomedical applications.
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[8] Lancmanová A., Bodnár T., Keslerová R.: Numerical Validation of a Simple
Immersed Boundary Solver for Branching Channels Simulations, In: D. Šimurda
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Abstract: We investigate the properties of the least-squares solution of
the system of equations with a matrix being the incidence matrix of a given
undirected connected graph G and we propose an algorithm that uses this
solution for finding a vertex-disjoint cycle cover (2-factor) of the graph G.
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1. Introduction

Finding a vertex-disjoint cycle cover (called a 2-factor) of a given undirected
graph G consists in finding a set of disjoint cycles which are subgraphs of G and
contain all vertices of G (see Figure 1). It is well known that a 2-factor of an
undirected 2-factorable graph can be found in polynomial time by finding a perfect
matching in some larger graph (cf. [10]). When we prescribe further conditions
(e.g. number of components, minimal cycle length) the problem of finding a 2-factor
becomes NP-hard (cf. [4]). This includes a 2-factor formed by one component only,
i.e. the Hamiltonian cycle of the graph G.

In this paper we investigate the properties of the least-squares solution of the
system of equations with a matrix being the incidence matrix of the given undirected
connected1 graph G and propose an algorithm that uses this solution for finding
a 2-factor of the graph G. In this algorithm we successively erase the edges from the
graph until we obtain the desired 2-factor of the graph. For determination of which
edge will be erased we employ and test three strategies: S1, S2 and S3.

DOI: 10.21136/panm.2022.10
1All the strategies considered can be easily extended to disconnected graphs.
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Figure 1: Graph G (left) and its vertex-disjoint cycle covers (2-factors). The last
one is the Hamiltonian cycle of the graph G.

2. Graph, its representation and notation

By graph G we consider an ordered pair G = (V,E), where

V = V (G) = {v1, v2, . . . , vn}
is a set of vertices of graph G and

E = E(G) = {e1, e2, . . . , em} ⊆
(
V

2

)
, ej = {vk, vl}, k 6= l,

is a set of edges of the graph G.

We denote by B ∈ {0, 1}n×m the incidence matrix of G satisfying Bij = 1 if vi ∈ ej
and Bij = 0 if vi 6∈ ej. Arbitrary set of edges can be represented by the vector x ∈
{0, 1}m×1, which is a characteristic vector of the set X ⊆ E satisfying xi = 1 if ei ∈ X
and xi = 0 otherwise. If we want to refer to a particular edge e ∈ X we also use
a notation [x]e (instead of xi). Further, we denote by Be ∈ {0, 1}n×(m−1) the matrix
obtained from B by deleting the column corresponding to the edge e. Similarly, we
denote by xe the vector that we obtain from x by deleting [x]e. Finally, 1k stands
for a column vector formed by k ones.

Using this notation we may define the vertex-disjoint cycle cover x of the graph G
being any set of edges satisfying

x ∈ {0, 1}m×1 & 1T
mx = n & Bx = 2 · 1n. (1)

While the second condition ensures the cycle cover contains n edges, the third one
guarantees that each vertex coincides with exactly 2 edges.

3. Basic properties of the vector xLS

The least-square solution of the system Bx = 2 · 1n is defined using the Moore–
Penrose pseudo-inverse of the matrix B (see e.g. [8]) as follows

xLS = B†(2 · 1n) = 2 ·B†1n. (2)

In this section we investigate the properties of the vector xLS.
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Lemma 1. Let the graph G be non-bipartite, then the least-square solution xLS of
the system of equations Bx = 2 · 1n satisfies

1T
mxLS = n. (3)

For bipartite graph G = (V1 ∪ V2, E) with |V1| = n1 and |V2| = n2 there holds

1T
mxLS =

4n1n2

n
. (4)

Proof. Since the rows of the incidence matrix B are linearly independent for non-
bipartite connected graphs (cf. [11]), the pseudo-inverse of the matrix B satis-
fies B† = BT (BBT )−1 and, thus, the least-square solution xLS satisfies BxLS =
BBT (BBT )−1(2 · 1n) = 2 · 1n. Consequently, there holds

2 · n = 2 · 1T
n1n = 1T

n (2 · 1n) = 1T
n (BxLS) = (BT1n)TxLS = 2 · 1T

mxLS. (5)

If G is bipartite (and connected), then the rank of B is n− 1 (cf. [11]) and its rows
are linearly dependent. Hence, one can order columns of BT (i.e. vertices of G) so
that

BTw = 0 for w = (1, 1, . . . , 1︸ ︷︷ ︸
n1−times

,−1,−1, . . . ,−1︸ ︷︷ ︸
n2−times

)T . (6)

Considering the singular value decomposition of B in the form B = UΣV T , the
Moore-Penrose inverse of B has a form B† = V Σ†UT with Σnn = Σ†nn = 0 being the
singular value corresponding to the left singular vector2 u = 1

‖w‖ w = 1√
n
w, i.e. to

the last column of the matrix U . Consequently, for bipartite graphs there holds

1T
mxLS =

1

2
(BT1n)TxLS =

1

2
(BT1n)T (2B†1n) = 1T

nBB†1n

= 1T
nUΣV TV Σ†UT1n = 1T

nUΣΣ†UT1n = 1T
nU(In − ene

T
n )UT1n

= 1T
n1n − (1T

nUen)2 = n− (1T
nu)2 = n− 1

n
(1T

nw)2 = n− (n1 − n2)2

n

= n− (n1 + n2)2 − 4n1n2

n
=

4n1n2

n
, (7)

where we applied the equality BT1n = 2 · 1m resulting from the fact that each row
of BT contains exactly two ones (i.e. each edge connects two vertices).

Lemma 2. Let x ∈ {0, 1}m be a vertex-disjoint cycle cover, then

‖x− xLS‖2 = n− ‖xLS‖2. (8)

2In the whole paper by the expression ‖x‖ =
√
xTx we denote the standard Euclidean norm of

the vector x.
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Proof. Since Bx = 2 · 1n and xLS = 2B†1n, there holds

‖x− xLS‖2 = (x− 2B†1n)T (x− 2B†1n) =

= ‖x‖2 − 4xTB†1n + 4 · 1T
n (B†)TB†1n

= n− 4xTB†BB†1n + 4 · 1T
n (B†)TB†1n

= n− 4xT (B†B)TB†1n + 4 · 1T
n (B†)TB†1n

= n− 4(B†Bx)TB†1n + 4 · 1T
n (B†)TB†1n

= n− 8(B†1n)TB†1n + 4 · 1T
n (B†)TB†1n = n− ‖xLS‖2, (9)

where we applied the equalities B† = B†BB† (see e.g. [8]) and Bx = 2 · 1n.

Corollary 3. Let the graph G with the incidence matrix B contain a 2-factor. Then
the least-square solution to the system Bx = 2 · 1n satisfies

‖xLS‖2 ≤ n. (10)

When ‖xLS‖2 = n, then x = xLS is the only 2-factor of the graph G.

Proof. The inequality (10) follows from the inequality n−‖xLS‖2 = ‖x−xLS‖2 ≥ 0.
When ‖xLS‖2 = n, we obtain ‖x− xLS‖2 = n− ‖xLS‖2 = 0 for any 2-factor x. This
is possible for x = xLS only.

Corollary 4. All 2-factors x satisfy

xTxLS = ‖xLS‖2. (11)

Proof. The equality (11) results from the fact that ‖x‖2 = n and from the relation

2 · xTxLS = ‖x‖2 + ‖xLS‖2 − ‖x− xLS‖2 = ‖x‖2 + ‖xLS‖2 − n + ‖xLS‖2. (12)

Remark 5. From the equality (9) it follows that each 2-factor x lies on the m-
dimensional sphere centered in xLS with the radius

√
n− ‖xLS‖2. Thus, assuming

the graph G contains k different 2-factors xi, i = 1, 2, . . . , k, with the mean value
xk = 1

k

∑k
i=1 xi, the multi-dimensional version of the Berry–Esseen theorem gives

‖xLS − xk‖ ≤ C ·
√
n− ‖xLS‖2

√
k

k→∞−→ 0, (13)

providing xi are independent and identically distributed on the sphere (see e.g. [2]
and [3]). However, we expect that this assumption is not fulfilled in this case and
the proper formulation for 2-factors needs more investigation. Nevertheless, from the
experiments it follows that xLS is, indeed, a good approximation of x for large k and
that a result similar to (13) really holds (see Figure 2).
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Figure 2: For graphs with a large number of 2-factors the least-square solution xLS is
a good approximation of xk. Here we considered all non-isomorphic graphs (see [7])
on n = 9 vertices and m = 18 edges. Each point corresponds to a single graph. The
curve is a graph of the function 6/

√
k.

Remark 6. From the equality (11) it also follows that finding a 2-factor can be
interpreted as finding n entries of the vector xLS that sum up to ‖xLS‖2. Hence,
we obtain the so-called 0-1 knapsack problem with the prescribed number of items to
include in a collection (for more details about knapsack problems, see e.g. [5]).

Example 7. Let us consider a graph formed by 7 vertices and 9 edges depicted on the
Figure 3 (top left). It contains two 2-factors. If we compute the respective vector xLS

we realize that the values of xLS entries are significantly higher for edges belonging to
both 2-factors. This observation leads us to the strategy (S1) consisting in removing
edges with the smallest xLS-value.

4. Sufficient condition

The following theorem provides a useful tool for determining which edge can be
removed from the graph. Unfortunately, in most cases, none of the edges satisfy the
condition (14) (see Figure 5a). In that situation we remove the edge with the highest
value of the left-hand side of (14) (strategy S2).

Theorem 8. Let G be a graph with the incidence matrix B, let e ∈ E(G) be any
edge such that G\e is a connected non-bipartite graph and let xLS be the least-square
solution to the system Bx = 2 · 1n. If there is

(1− [xLS]e)
2

1− eT (BBT )−1e
> n− ‖xLS‖2, (14)

then the following implication holds

G has a 2-factor ⇒ G \ e has a 2-factor. (15)
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Figure 3: An example of a graph (top left) with two 2-factors (right). The values
of xLS entries (bottom left) are significantly higher for edges belonging to both
2-factors.

Proof. For a contradiction, let us suppose that the inequality (14) holds and all
2-factors x ∈ {0, 1}m×1 of the graph G satisfy [x]e = 1. Let us denote by Be ∈
{0, 1}n×(m−1) the matrix obtained from B by deleting the column corresponding to
the edge e. Similarly, let us denote by xLS,e the vector that we obtain from xLS by
deleting the entry corresponding to the edge e. If we choose any 2-factor x of the
graph G then the following equality holds

Bx = Bexe + e = 2 · 1n = BxLS = BexLS,e + [xLS]e · e, (16)

where xe is obtained from x by deleting the entry corresponding to the edge e.
Hence, Be(xLS,e − xe) = (1 − [xLS]e) · e and for the least-square solution zLS of

the system Bez = (1− [xLS]e) · e there holds

‖zLS‖2 = (1− [xLS]e)
2‖B†ee‖2 ≤ ‖xLS,e−xe‖2 = ‖xLS−x‖2− ([xLS]e−1)2. (17)

Thus, using the equality (9) we obtain an estimate

‖B†ee‖2 ≤ n− ‖xLS‖2

([xLS]e − 1)2
− 1. (18)

It remains to simplify the expression ‖B†ee‖2 = eT (BeB
T
e )−1e. For this purpose we

apply the Sherman-Morrison formula (see [9])

(BeB
T
e )−1 = (BBT − eT e)−1 = (BBT )−1 +

(BBT )−1eeT (BBT )−1

1− eT (BBT )−1e
(19)

and obtain

eT (BeB
T
e )−1e = eT (BBT )−1e +

eT (BBT )−1eeT (BBT )−1e

1− eT (BBT )−1e

=
eT (BBT )−1e

1− eT (BBT )−1e
=

1

1− eT (BBT )−1e
− 1. (20)
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Hence
1

1− eT (BBT )−1e
≤ n− ‖xLS‖2

([xLS]e − 1)2
, (21)

which is in contradiction with the assumption (14).

Remark 9. A similar inequality to (14) can be derived in the case when G \ e is
a bipartite graph using formulas for the Moore–Penrose inverse of modified matrices,
for more details see e.g. [1] or [6].

5. Minimizing the length of xLS

With the aid of [7] we have computed the values of ‖xLS‖ =
∥∥xG

LS

∥∥ for all con-
nected non-isomorphic graphs G on 9 vertices with a minimal vertex degree 2 (see
Figure 4) and found out that the value of

∥∥xG
LS

∥∥ is significantly smaller for graphs G
containing a large number of 2-factors. This has lead us to the strategy (strategy S3)
consisting in removing the edge e ∈ E(G) with a property

e = arg min
ê∈E(G)

∥∥xG\ê
LS

∥∥ (22)

(see Figure 5b for an example of an application of the strategy S3).

Figure 4: For graphs with a large number of 2-factors the norm of the least-square
solution xLS is significantly smaller. Thus, in order to preserve a maximum number
of 2-factors in the graph we always try to remove the edge that minimizes ‖xG\e

LS ‖
(strategy S3). Here the results for connected non-isomorphic graphs with 9 vertices
and minimal vertex degree 2 are shown (each point represents one graph).

For computing
∥∥xG\e

LS

∥∥ we use the following lemma.
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Lemma 10. Let G be a graph with the incidence matrix B and let e ∈ E(G) be any
edge such that G \ e is a connected non-bipartite graph. Further, let xG

LS be the least-

square solution to the system Bx = 2 · 1n and let x
G\e
LS be the least-square solution to

the system Bex = 2 · 1n. Then there holds

∥∥xG\e
LS

∥∥2−
∥∥xG

LS

∥∥2
=

[xG
LS]2e

1− eT (BBT )−1e
. (23)

Proof. We employ the relations from the equalities (9) and (19) and obtain∥∥xG\e
LS

∥∥2
=

∥∥2B†e1n

∥∥2
= 4 · 1T

n (BeB
T
e )−11n

= 4 · 1T
n (BBT )−11n +

4 · 1T
n (BBT )−1eeT (BBT )−11n

1− eT (BBT )−1e

=
∥∥xG

LS

∥∥2
+

(2 · eT (BBT )−11n)2

1− eT (BBT )−1e
=
∥∥xG

LS

∥∥2
+

[xG
LS]2e

1− eT (BBT )−1e
, (24)

where we used the fact that

2 · eT (BBT )−11n = [2 ·BT (BBT )−11n]e = [2 ·B†1n]e = [xG
LS]e (25)

is the entry of the vector xG
LS corresponding to the edge e.

Remark 11. As in the case of the inequality (14) similar equality to (23) can be
derived when G\e is a bipartite graph using formulas for the Moore–Penrose inverse
of modified matrices, for more details see again e.g. [1] or [6].

Figure 5: For the edges of the graph from the Example 7 we compute the values
of the left-hand side of the inequality (14) (Figure 5a). The edge with the highest
value (1.07) will be removed (strategy S2). Unfortunately, n−‖xLS‖2 = 1.07 in this
case, hence, the condition (14) is not fulfilled. Analogously, we compute the values of
the right-hand side of the equality (23) (Figure 5b). Then the edge with the smallest

value (0.82) will be removed (strategy S3) in order to minimize the norm of x
G\e
LS .

Thus, for this graph, all three strategies lead to the deletion of the same edge.
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6. Numerical experiments

We consider 10 000 randomly generated graphs with 32 vertices and 64 edges
containing a Hamiltonian cycle. For each graph we apply all three strategies and
successively remove edges. In each row of the Table 1 one can find results for each
strategy employed. The numbers of graphs for which the algorithm failed are stored
in the second column of the table. In the third to seventh column one can find the
numbers of graphs for which the algorithm succeeded and the resulting 2-factor is
formed by 1 to 5 components. In the last column an average number of components
for each successfully ended strategy is shown.

strategy failed 1 cmp 2 cmp 3 cmp 4 cmp 5 cmp avg cmp

S1 372 4498 4297 774 59 0 1.6255
S2 59 5487 3337 930 161 26 1.5818
S3 3582 2096 2816 1232 247 27 1.9550

Table 1: Numerical results for all considered strategies.

7. Conclusion

Numerical experiments show that all three strategies considered were successful
in more than 50 percent of all cases and from this point od view we shall say that
the considerations from which they were derived were justified. The best result has
been achieved by the strategy S2, which succeeded 99.41 percent of the time. The
combination of all three strategies, as well as the involvement of some properties of
the graph in the edge deletion decision, will be the subject of the future research.
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Abstract: In this paper a method for the detection of initial stress tensor is
proposed. The method is based on measuring distances between some pairs of
points located on the wall of underground opening in the excavation process.
This methods is based on the solution of eighteen auxiliary problems in the
theory of elasticity with force boundary conditions. The optimal location of
the pairs of points on the wall of underground work is studied. The pairs must
be located so that the condition number of a certain matrix has the minimal
value, which guarantees a reliable estimation of initial stress tensor.

Keywords: initial stress tensor, first boundary value problem of the theory
of elasticity, condition number of matrices
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1. Introduction

The knowledge of initial stress tensor is very important when one evaluates the
stability of underground openings like tunnels, compressed gas tanks or radioactive
waste deposits. The knowledge of initial stress tensor enables to optimize the re-
inforcement of tunnels, choose the suitable shape of underground works and their
orientation in the rock environment. The mathematical modeling of stress fields in
the vicinity of underground openings requires precise boundary conditions, which
can be derived from initial stress tensor. Extensive literature is devoted to the de-
termination of initial stress tensor. An overview of these methods can be found in
the papers [1]–[3] that describe the development of these methods to the present.
Theoretical and practical aspects of these methods are studied in [4] and [5]. These
methods are based on the installation of probes equipped with sensors that measure
deformations occurring after removal rock, overcoring, in their vicinity. Due to the
stress in the rock, the removal of a part of the rock causes deformation of the remain-
ing rock, which is transfered to the sensors. The probes are relatively small, a few
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centimeters, and the accuracy of such measurements is not high. A very interesting
method that allows to determine the whole initial stress tensor is presented in [6].

In this paper we present a new method, which is based on measuring the dis-
tances between pairs of selected points on the walls of the underground work. When
a part of the rock is excavated, the distance between these points changes and the
magnitude of these changes depends on the initial stress tensor. A procedure which
allows to determine the initial stress tensor from the measured distances is developed.
A criterion showing how to select measuring points so that errors of measurement
do not affect the results very much is presented. This method guarantees a reliable
estimate of the initial stress tensor. The procedure of optimal choice of measuring
points is based on the conditional number of the matrix corresponding with choice
of measuring points.

2. Auxiliary results

The method described in this section is based on the solution of the first boundary
problem of the theory of elasticity, e.i. only the force conditions are prescribed on
the boundary of the domain, where the problem is solved. A typical problem solving
domain is shown in Figure 1.

Ω

Γ

~

Ω

Figure 1: Typical problem solving area.

The symbol Ω in Figure 1 is the domain that corresponds to the prism and the
symbol Ω̃ is the subdomain that represents the excavated space in the domain Ω.
The symbol Ω1 corresponds to domain Ω−Ω̃ and Γ ⊂ ∂Ω has a nonzero measure. Let
us have a space V = [H1(Ω1)]3, where H1(Ω1) is a Sobolev space of functions having
first-oder derivatives that are integrable with the second power. We will continue to
apply the Einstein summation convention.

Let us formulate the first variational problem D1 whose solution is a minimum
of the following functional on V

1

2

∫
Ω1

cijkleij(u)ekl(u) dx−
∫
∂Ω

Piui dS, (1)
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where u = (u1, u2, u3) belongs to V and

eij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the tensor of small deformations. The symbol P = (P1, P2, P3) represents the
forces on ∂Ω and Pi ∈ L2(∂Ω). The coefficient cijkl ∈ L∞(Ω1) meet the following
conditions

cijkl = cjikl = cijlk = cklij. (2)

There is a constant C > 0 such that the inequality

cijkleijekl ≥ Ceijeij (3)

holds for all symmetric tensors eij. The problem D1 is solvable when the conditions∫
∂Ω

Pi dS = 0,

∫
∂Ω

(x× P )i dS = 0 (4)

are met. This problem is not uniquely solvable and it has infinite number of solutions.
If u1(x) and u2(x) are two solutions then

u2(x)− u1(x) = Ax+ b, (5)

where A is an antisymmetric matrix 3× 3 and b is a vector from R3. This problem
can be modified so that it will be uniquely solvable and this solution will be the
minimum of the functional (1), i.e., the solution of the problem D1, provided the
conditions (4) are met.

Let us define functionals on V

gα(u) =

∫
Γ

uα dS, α = 1, 2, 3,

gα(u) =

∫
Γ

(x× u)α−3 dS, α = 4, 5, 6.

(6)

Then there is a constant C > 0 such that the following inequality

C ‖ u ‖V≤
∫
Ω1

cijkleijekl dx+ gα(u)gα(u) (7)

holds for all u ∈ V .
Let us formulate the second variational problem D2 whose solution is a minimum

of the functional

1

2

∫
Ω1

cijkleij(u)ekl(u) dx+
1

2
gα(u)gα(u)−

∫
∂Ω

Piui dS, (8)
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on V . The minimum of functional (8) is unique. Moreover the following inequality

‖ u ‖V≤ C ‖ P ‖[L2(∂Ω)]3 (9)

holds, where C is a positive constant independent of u and P . The last inequality
expresses the continuous dependence of the solution of the problem D2 on the force
boundary conditions. Note that solving the problem D2 does not require the equi-
librium conditions (4) to be met. But if these conditions are satisfied, the solution
of D2 is a solution of D1. All these results can be found in the book [7].

Let τij be a symmetric tensor. We say that the force boundary conditions Pi are
generated by the tensor τij when at every x ∈ ∂Ω the equation

Pi(x) = τijnj(x) (10)

holds, where nj(x) is a normal to the boundary ∂Ω at the point x.

Lemma 1. Let τij be a symmetric tensor and let Pi be defined by the formula (10)
on the boundary ∂Ω, then Pi satisfy the equilibrium conditions (4).

Proof. If we use the Gaussian theorem on the surface integral, then∫
∂Ω

Pi(x) dS =

∫
∂Ω

τijnj(x) dS =

∫
Ω

∂τij
∂xj

dx.

Since τij is constant, then the last integral is zero. We express the formula x× P in
the individual components, then

(x× P )1 =x2τ3jnj − x3τ2jnj,

(x× P )2 =x3τ1jnj − x1τ3jnj,

(x× P )3 =x1τ2jnj − x2τ1jnj,

where n = (n1, n2, n3) is the normal to the boundary ∂Ω at x. If we use the Gaussian
theorem on the surface integral, then∫

∂Ω

(x× P )1 dS =

∫
∂Ω

x2τ3jnj − x3τ2jnj dS =

∫
Ω

∂(x2τ3j − x3τ2j)

∂xj
dx.

Since τij is symmetric and constant, then the last integral is zero. The same equations
can be proved for the components (x× P )2 and (x× P )3.

The inequality (9) implies the existence of a continuous mapping

K : Ssym −→ V, (11)

where Ssym is the set of all second oder symmetric tensors. This mapping assigns
a solution to the problem D2 to each second order symmetric tensor. Lemma 1
indicates that the value of this mapping is also a solution to the problem D1.

The following lemma will be useful in formulating the problem for determining
the initial stress tensor.
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Lemma 2. Let u1, u2, x1, x2 ∈ R3 and the value

a =
‖u1 − u2‖
‖x1 − x2‖

< 1

be such small that a2 can be neglected, then the following equality

‖u1 + x1 − u2 − x2‖ − ‖x1 − x2‖ =
〈u1 − u2, x1 − x2〉
‖x1 − x2‖

holds approximately, where 〈·, ·〉 is the scalar product in R3. Moreover, if

v1 = u1 + Ax1 + b, v2 = u2 + Ax2 + b,

where A is an antisymmetric matrix 3× 3 and b is a vector from R3, then

〈v1 − v2, x1 − x2〉
‖x1 − x2‖

=
〈u1 − u2, x1 − x2〉
‖x1 − x2‖

.

The proof of this lemma can be found in [8].

3. Description of the method

The method will be described on the geometry of two intersecting tunnels, which
correspond to the real situation when the original stress tensor was determined.
The situation is shown in Figures 2–4.

Figure 2: Underground opening in homogeneous domain Ω.
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Figure 3: Detail of underground opening with highlighted three steps of the excava-
tion process.
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Figure 4: The pairs of measuring points corresponding to the highlighted faces of
the tunnels from Figure 2.

Figure 2 shows the domain, where the underground opening is located, Figure 3
shows three steps of the excavation process. Highlighted faces of the tunnels indicate
the location of the measuring points. Figure 4 shows the position of the pairs of
measuring points to the highlighted faces from Figure 3. The set of the pairs of
measuring points is divided into the two subsets I1 = {1, 2, 3, 4, 5} and I2 = {6, 7, 8}.

Let Ω be the domain that corresponds to the prism shown in Figure 2. Let
Ω1, Ω2, Ω3 be the subdomains derived from the domain Ω by extraction of the parts
corresponding to three steps of the excavation process shown in Figure 3.

In Step 1 (light gray color in Figure 3) the measuring points are installed on
the walls of the tunnel and the distances between the selected pairs I1 of measuring
points are measured, see pairs 1, 2, 3, 4, 5 in Figure 4. These measuring points are
located at the ends of short steel bars, which are glued to the rock on the walls of
the tunnel.
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In Step 2 (medium gray color in Figure 3) another part of the main tunnel and
a part of the tunnel oriented perpendicular to the main tunnel are excavated. The dis-
tances between the pairs I1 are re-measured. The values obtained in Step 1 are sub-
tracted from the values measured in Step 2 and the resulting values are marked di,
i ∈ I1. Moreover, another group of measuring points is installed on the walls of
the tunnel perpendicular to the main tunnel – pairs 6, 7, 8 in Figure 4. The dis-
tances between the selected pairs I2 of points are measured.

In Step 3 (dark gray color in Figure 3) remaining part of the perpendicular tunnel
is extracted and then the distances in the second set I2 of pairs of measuring points
are re-measured. The values obtained in Step 2 are subtracted from the values mea-
sured in Step 3 and the resulting values are marked dj, j ∈ I2. The procedure for
selecting the pairs of measuring points will be described below. We now explain how
to obtain the initial stress tensor from these measurements.

Let’s approach the formulation of our task. Let τij be a symmetric second-order
tensor that corresponds to the original stress tensor. We say that the force boundary
conditions P = (P1, P2, P3) are generated at the boundary of the domain by this
tensor if

Pi(x) = τijnj(x) (12)

holds, where n(x) is the normal to the boundary of the domain at the point x.
Assume that we know the solutions u1(x),u2(x),u3(x) of the problem (1) on Ω1,

Ω2, Ω3 with the force boundary conditions given by the expression (12) on ∂Ω and be
equal to zero of the remainders of the boundaries ∂Ω1, ∂Ω2, ∂Ω3. Due to Lemma 1
the solutions exist. Let the pairs of the points xi,yi, i ∈ I1 in the first set and
the pairs xj,yj, j ∈ I2 in the second set be selected and the calculated differences in
distances between these points are compared with numbers di, i ∈ I1 and dj, j ∈ I2.
These numbers represents the differences in the distances measured in the excavation
process. The differences are equal to the following expressions

‖u2(xi) + xi − u2(yi)− yi‖ − ‖u1(xi) + xi − u1(yi)− yi‖ = di, i ∈ I1,

‖u3(xj) + xj − u3(yj)− yj‖ − ‖u2(xj) + xj − u2(yj)− yj‖ = dj, j ∈ I2.
(13)

In geo-mechanical practice, the displacements ‖u(x) − u(y)‖ is much smaller than
‖x−y‖. Under these assumptions and Lemma 2, the relations (13) can be rewritten
into the following form

〈u2(xi)− u2(yi),xi − yi〉
‖xi − yi‖

− 〈u1(xi)− u1(yi),xi − yi〉
‖xi − yi‖

= di, i ∈ I1,

〈u3(xj)− u3(yj),xj − yj〉
‖xj − yj‖

− 〈u2(xj)− u2(yj),xj − yj〉
‖xj − yj‖

= dj, j ∈ I2,

(14)

what is proved in [8]. Moreover the equations (14) are more suitable for further anal-
ysis and all mathematical aspects are also explained in [8]. The symbol 〈x,y〉 = xiyi
in the expression (14) is the scalar product in R3.
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Now let’s focus on finding the original stress tensor and consider the following
six stress tensors.

τ 1
ij =

 1 0 0
0 0 0
0 0 0

 , τ 2
ij =

 0 0 0
0 1 0
0 0 0

 , τ 3
ij =

 0 0 0
0 0 0
0 0 1

 ,

τ 4
ij =

 0 1 0
1 0 0
0 0 0

 , τ 5
ij =

 0 0 1
0 0 0
1 0 0

 , τ 6
ij =

 0 0 0
0 0 1
0 1 0

 .

Next, let us denote uk1(x), uk2(x), uk3(x), k = 1, . . . , 6 the solutions of the boundary
value problems of the theory of elasticity on the domains Ω1, Ω2, Ω3 with the force
boundary conditions given by the tensors τ kij using the relation (3) on ∂Ω. The forces
prescribed on ∂Ω1 − ∂Ω, ∂Ω2 − ∂Ω, ∂Ω3 − ∂Ω, which corresponds to the walls of
the gradually excavated tunnels, are zero.

As far as we use linear elastic model, we assume, that resulting displacements are
linear combination of the displacements induced by auxiliary problems. So, the so-
lution to our problem is the vector z = (z1, z2, z3, z4, z5, z6) such that the functions

u1(x) = zku
k
1(x), u2(x) = zku

k
2(x), u3(x) = zku

k
3(x)

satisfy the relations (5) and the tensor

τij = zkτ
k
ij (15)

is the original stress tensor. To simplify further analysis, we will use the following
designations

hki =
〈uk2(xi)− uk2(yi),xi − yi〉

‖xi − yi‖
− 〈u

k
1(xi)− uk1(yi),xi − yi〉

‖xi − yi‖
, i ∈ I1,

hkj =
〈uk3(xj)− uk3(yj),xj − yj〉

‖xj − yj‖
− 〈u2(xj)− u2(yj),xj − yj〉

‖xj − yj‖
, j ∈ I2,

(16)

which are connected with the relations (14). It is possible to use the least squares
method that was proposed in [8], but now we will use a simpler method. Let us
choose the set J = J1 ∪ J2 such that J1 ⊂ I1, J2 ⊂ I2 and the number of elements of
the set J is six. The vector z is a solution of the system of linear equations

Hz = d, (17)

where the elements of 6 × 6 matrix H = (hkj ), 1 ≤ k ≤ 6, j ∈ J, we can find
according to (16) and the components of the vector d are results of the measuring
process described in Step 1–Step 3 for j ∈ J .

After solving the system (17), the initial stress tensor can be expressed in the
form (15). It is very important to install pairs of measuring points so that the
matrix H has favorable properties for solving the problem. Note that in the case
of an insulated tunnel that does not intersect another tunnel, we could not find
the location of the measuring points so that the matrix H has favorable properties.
We will deal with this issue in the following section.
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4. Optimal choice of measuring points

In this section, we will deal with the question of how to select pairs of points so
that the system (17) has good properties from the point of view of the solvability of
the problem. We select a pair of measuring points so that the matrix H, which is
constructed using formulas (16), has the property that a small change of the vector d,
the right side of the system (17), does not have much effect on the solution. This
property is connected to the condition number κ(H) of the matrix H, which is
expressed by the following formula

κ(H) = ‖H‖‖H−1‖, (18)

where ‖H‖ is the matrix norm of the matrix H and H−1 is the inverse matrix to H.
Then the relationship between the change of the solution δz of the system (16) and
the change of the right side δd can be expressed by the following formula

‖δz‖
‖z‖

≤ κ(H)
‖δd‖
‖d‖

.

The last inequality implies that for the reliability of the solution of the system (17) it
is necessary that the condition number (18) is as small as possible. These results can
be found in textbooks of linear algebra, for example in [9]. When we look at the way
the matrices H are constructed using the expressions (16), we find that by a suitable
choice of pairs of measuring points we are able to influence the condition number.
The optimal distribution of measuring points is achieved by solving several auxiliary
problems of the theory of elasticity and choosing a finite set of measuring points at
the boundary of the underground opening. Then we select different sets of pairs of
measuring points and check the value of the condition number of the matrix H com-
posed of these pairs. As an optimal selection, we choose the set of pairs of measuring
points for which the conditional number of the matrix H is the smallest. The selec-
tion of this set is based on mathematical modeling and specific cases will be analyzed
in the next section. Note that if we can find the pairs of measuring points so that
the conditional number of the corresponding matrix is less than 10 and we are able to
guarantee a measurement accuracy of 1%, then the original stress tensor obtained by
the methods described above will differ from the actual original stress tensor by 10 %.

We can say that the optimal selection of pairs of measuring points eliminates
the effect of measurement errors. When applying the above method, we proceed as
follows. We approximate the domains, shown in Figures 2–3 by finite element mesh
and solve 18 auxiliary problems as described in Section 2. Then we select six pairs of
points – nodes of the finite element mesh, compile the matrix and calculate the con-
ditional number of this matrix. It is necessary to choose six pairs of points as far as
the stress tensor has six independent components. We are looking for pairs of points
on the walls of the underground opening so that it is possible to measure the distance
between these points. We pass all suitable pairs of points and select the six pairs of
points for which the conditional number of the matrix H is the smallest.
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We will test this procedure on a pair of perpendicular vertical tunnels in the fol-
lowing section. We selected eight pairs of points as shown in Figure 4 and from this
set we selected six pairs of points to show that the conditional number of the matrix
depends on this selection. This procedure can be applied to various shapes of under-
ground openings and mining operations. The shape of the underground opening and
the excavation process were chosen in accordance with the research plan at the Bukov
locality in the Czech Republic. This site serves as an underground laboratory and
model repository for radioactive waste and is described in the report [11]. If we
know the future shape of the underground opening and the progress of the mining
work, we can use mathematical modeling, as described above, to select six pairs of
measuring points in a suitable way and determine the tensor of the original stress.

We tried to apply this procedure to a direct tunnel and two steps of mining opera-
tions, but we were unable to find six pairs of measuring points so that the conditional
number of the matrix H would be less than 60.

5. In situ experiment

The above-mentioned underground laboratory is located in a metamorphic rock,
which is considered isotropic and homogeneous in the vicinity of the underground
opening. The elastic properties of this rock are known from laboratory measure-
ments, namely Yong’s modulus E = 60 GPa and Poisson’s ratio µ = 0.25. The
expected shape of the underground opening and the progress of the mining works
were known, which corresponds to Figure 2. Block Ω, into which two intersecting
tunnels are nested, has dimensions 110 m×100 m×70 m. The diameter of the tunnels
is 4 m. The tunnel in the x1 direction is long 70 m and the tunnel in the x2 direction
is long 30 m.

The GEM program, see [10], was used for analysis of the planned in situ ex-
periment. The program has been developed at Institute of Geonics for solving
geomechanical problems and allows solving elastic problems with force boundary
conditions. The program has been used to solve 18 auxiliary problems as described
in Section 3. However, it is possible to use any commercial program that allows you
to solve such tasks.

A MATLAB program was written that tested all six possible pairs of points that
were on the walls of the underground opening and the points were nodes of the finite
element mesh used to solve the auxiliary problems. To demonstrate that the condi-
tional number strongly depends on the selection of six pairs of measuring points, we
selected six pairs of points from a set of eight elements, as shown in Figure 4. Six
pairs from an eight-element set can be selected in twenty-eight ways. The results of
this analysis are shown in Table 1. The selection is realized by two subsets J1 ⊂ I1

and J2 ⊂ I2 , as described in Section 3. The configurations of the pairs of measuring
points c1 and c2 correspond to the results with the two smallest conditional numbers
of the matrix H and the configurations c3 and c4 correspond to the results with
the two largest conditional numbers. The values of the conditional numbers are on
the last line of Table 1.
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c1 c2 c3 c4
J1 J2 J1 J2 J1 J2 J1 J2

1,2,3 6,7,8 1,2,5 6,7,8 1,2,3,4 6,7 3,4,5 6,7,8
4.43 4.95 393.16 839.21

Table 1: Selection of subsets J1, J2 and corresponding conditional numbers κ(H).

d1 d2 d3 d4 d5 d6 d7 d8

-2.88 -0.60 -2.46 -5.32 -1.04 -1.75 -3.90 -2.79

Table 2: Measured differences in deformations in excavation process in [mm].

After this analysis, measurements were performed on selected pairs of measuring
points in the corresponding steps of the mining process, as shown in Figures 2–3.
The results of these measurements are shown in Table 2. The indexes at the num-
bers di correspond to the indexes of the pairs of measuring points as shown in
Figure 4. The measuring points were placed at the ends of 60 cm long steel an-
chors, which were fixed in the rock with LOKSET ampules with polyester resin.
The distances between the points were measured with a tape extensometer. This
extensometer makes possible to measure distances between points with an accuracy
of 0.01 mm. Considering the measured values in Table 2, the resolution of the ex-
tensometer guarantees a measurement accuracy of 1%.

The calculation was then performed, and the components of the original stress
tensors τij with the main stresses λi are shown in Table 3. The tensors thus obtained
are shown in the principal stresses in Figure 5.

τ11 τ22 τ33 τ12 τ23 τ13 λ1 λ2 λ3

c1 -69.1 -95.6 -64.5 -70.0 10.7 13.3 -156.6 -61.7 -10.9
c2 -70.2 -94.8 -69.5 -63.1 -12.2 12.8 -146.8 -74.9 -12.8
c3 -12.5 -8.5 306.0 -47.7 -68.6 -100.8 -94.6 36.3 343.4
c4 -182.5 -12.6 143.0 -6362.7 588.6 656.9 -6576.3 258.3 6266.0

Table 3: Original stress tensor τij and principal stresses λi in [MPa].

The directions of the principal stresses in the form of the unit eigenvectors n1,
n2, n3 of the matrix H are shown in Table 4.

From Figure 5 and Tables 3–4, we can see that the tensors corresponding to
the configurations c1 and c2 differ by about 10%, which is consistent with the hy-
pothesis formulated in Section 4.

The configurations of pairs of measuring points c3 and c4 leads to very un-
likely results, which corresponds very well to the fact that the conditional number
of the matrix is large, as can be seen from Table 1.
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Figure 5: The original stress tensors in principal stresses and directions obtained by
analysis of the configurations c1–c4 of measurements. Bold lines – full precision of
measured differences from Table 2 is used. Thin lines – measured values rounded to
milimeters are used.

c1 c2
n1 n2 n3 n1 n2 n3

-0.630 0.063 0.773 -0.630 -0.240 -0.730
-0.750 0.179 -0.630 -0.770 0.176 0.609
0.178 0.982 0.066 -0.010 0.955 -0.290

c3 c4
n1 n2 n3 n1 n2 n3

0.721 0.646 -0.250 -0.706 0.088 -0.703
0.630 -0.760 -0.152 -0.696 0.096 0.712
0.289 0.048 0.956 0.130 0.992 -0.007

Table 4: Principal stress vectors.

The dependence of the stability of numerical solutin on the condition number
we can see from the Figure 5 and from the Table 5. When we round the measured
values in Table 2 to whole milimeters, tensors for configurations c1 and c2 changed
slightly and tensors for configurations c3 and c4 changed significantly, which is also
in line with the hypothesis formulated in Section 4.

Table 5 shows the differences

∆d =
|d− d̂|
|d|

, ∆τ =
|τ − τ̂ |
|τ |

,
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c1 c2 c3 c4
∆d 0.11 0.09 0.10 0.08
∆τ 0.13 0.14 6.78 0.45

Table 5: Sensitivity of the value of resulting stress tensor to input data.

where d̂ are the approximated values form Table 2 rounded to the milimeters and τ̂
is the stress tensor for these approximated values for the configurations c1–c4.

At the Bukov site, it was impossible to use the over-coring method or the cone
probe method, which are described in [1], [6]. The rock in the Bukov locality is
granular with a grain size of several millimeters, which is comparable to the size of
the sensors on the probes in the above-mentioned. The individual measurements
performed by these methods showed completely different results. The method pro-
posed in this article shows stability of tensors for configurations c1 and c2, while
the resulting tensors for configurations c3 and c4 are not applicable. At the same
time, the reasons for this behavior were explained.

In addition, the principal stress directions for tensors in configirations c1 and c2
coincide with the principal stress directions obtained by the hydraulic fracturing
method, see [11]. The tunnel is located 550 m below the surface and at the specific
rock mass 2700 kg m−3 so the component of the initial stress tensor τ33 should be
equal to 14.8 MPa. The Young’s modulus E must be changed so that the component
τ33 of the original stress tensor is equal to this value. In Table 6, the original stress
tensors for configurations c1 and c2 are recalculated, and the corresponding Young’s
modulus values are in the last column.

τ11 τ22 τ33 τ12 τ23 τ13 λ1 λ2 λ3 E
c1 -15.8 -22.0 -14.8 -16.1 2.5 3.1 -36.0 -14.2 -2.5 13.8
c2 -15.4 -20.9 -14.8 -13.9 -2.7 2.8 -32.3 -16.5 -2.8 12.8

Table 6: Modified original stress tensor and principal stresses in [MPa] and reduced
Young’s modulus E in [GPa].

The Young’s modulus values were measured in the laboratory on a completely
homogeneous sample, so such a reduction in value is acceptable. Note that in our
case, the x1 axis is oriented west-east and the original stress tensors are in natural
coordinates and need not be transformed. Given the previous discussion, we can
accept tensors for configurations c1 and c2 in Table 6 as the original stress tensor.
These tensors differ by 10%.

6. Conclusion

In this paper, the authors presented a new method for determining the origi-
nal stress tensor. This method is based on measuring the distance between pairs
of selected points located on the walls of the underground work in the process of
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the excavation. Part of the method is a procedure for selecting pairs of measuring
points so that the estimate of the original stress tensor is reliable. This method is
applicable to coarse-grained and anisotropic rocks, where other methods are not so
successful. The measurements themselves are easy to carry out and the main work
is connected with the selection of pairs of measuring points and the evaluation of
measurements, which is based on mathematical modeling.

The authors believe that this method will find application in the construction of
new underground openings.
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Abstract: We present results on the estimation of unknown parameters in
systems of ordinary differential equations in order to fit the output of models
to real data. The numerical method is based on the nonlinear least squares
problem along with the solution of sensitivity equations corresponding to the
differential equations. We will present the performance of the method on the
problem of fitting the output of basic compartmental epidemic models to data
from the Covid-19 epidemic. This allows us to draw several conclusions on the
natural limitations of these models and their validity.
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1. Introduction

Ordinary differential equations (ODEs) are one of the most common mathemati-
cal tools to describe natural phenomena. Extensive literature exists on how to build
more or less sophisticated mathematical models leading to ODEs. Typically the re-
sulting equations contain unknown parameters (constants) which must be tailored
to the specific application. These can be obtained by measurement, theoretical con-
siderations, etc., but in certain situations it is difficult to come up even with a rough
estimate of the real-life parameters of the model. One possibility then is to tune the
parameters of the model so that its output agrees best with measured data. There
are many approaches to solve such a data-fitting problem, cf. [6]. Here we build on
the approach of [2] which uses so-called sensitivity equations to obtain the depen-
dence of the solution of the ODEs on the considered parameters (Section 2). This is
then used in a gradient-based Levenberg-Marquardt optimization algorithm which
solves a nonlinear least-squares problem of fitting the output to the data (Section 3).
We test the data-fitting algorithm on compartmental models from epidemiology (Sec-
tion 4), specifically we take data from the COVID-19 epidemic in the Czech Republic
(Section 5) and discuss the validity of such simple models.
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2. Ordinary differential equations and sensitivity equations

We use the notion of a system of ODEs in the following way:

Definition 1. Let n ∈ N, and fi : R × Rn → R for i ∈ {1, . . . , n}. By a system of
differential equations we mean a system of the form

y′1 = f1(y1, . . . , yn, t),

y′2 = f2(y1, . . . , yn, t),

... (1)

y′n = fn(y1, . . . , yn, t).

We use vector notation y′ = f(t, y(t)) for brevity. By an initial value problem we
mean the system (1) along with a point (t0, y

0) ∈ R×Rn called the initial condition.
We seek a solution of the system of differential equations such that y(t0) = y0.

Throughout this contribution, we consider the case when the system of ODEs (1)
contains some known or unknown parameters, in which case the resulting solution
also depends on the choice of the parameter. Specifically, instead of y being only
a function of t, i.e. y(t), we will have also the dependence on some parameter(s) c:
hence we write y(t, c). To simplify the notation, for some fixed value of the parameter
c we will sometimes omit the second argument and write y(t, c) = y(t). Similarly,
we write y′(t, c) = y′(t) = ∂y

∂t
(t, c) if the right-hand side is defined. This will simplify

the notation for ODEs, where t is the relevant variable and c is only a parameter.
Now we follow the paper of Dickinson and Gelinas [2] and the monograph [6] by

Schittkowski. Let us consider an initial value problem

y′(t, c) = f
(
y(t, c), t, c

)
, y(0, c) = y0, (2)

which depends on a real parameter c. For now we assume that the initial condition y0

does not depend on c. In order to optimize the parameters in our models we need
to determine the so called sensitivity of the system with respect to c.

Definition 2. Let i ∈ {1, . . . , n}. We define the sensitivity of the i-th variable with
respect to the parameter c by

zi(t, c) =
∂yi
∂c

(t, c).

The sensitivities defined above can be obtained as a solution of a system of ODEs
called the sensitivity equations which we derive now. Let i ∈ {1, . . . , n}. We assume
that all functions involved are sufficiently smooth. Then we obtain by Definition 2
and the rule for interchanging the order of differentiation

∂zi
∂t

(t, c) =
∂

∂t

(
∂yi
∂c

(t, c)

)
=

∂

∂c

(
∂yi
∂t

(t, c)

)
. (3)
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By using (2), the chain rule for differentiation and Definition 2, we have

∂zi
∂t

(t, c) =
∂

∂c

[
fi
(
y1(t, c), . . . , yn(t, c), t, c

)]
=
∂fi
∂c

(
y1, . . . , yn, t, c

)
+

n∑
j=1

∂fi
∂yj

(
y1, . . . , yn, t, c

)∂yj
∂c

(t, c)

=
∂fi
∂c

(
y1, . . . , yn, t, c

)
+

n∑
j=1

∂fi
∂yj

(
y1, . . . , yn, t, c

)
zj(t, c).

(4)

We have obtained the so-called sensitivity equations. These are a system of n ODEs
which can be solved simultaneously with the original system (2). We now determine
the initial condition of the sensitivity equations. Since the initial condition of the
original system (2) does not depend on the parameter c, we have by Definition 2:

zi(0, c) =
∂yi
∂c

(0, c) =
∂y0

i

∂c
= 0. (5)

Definition 3. Let y′(t, c) = f(y(t, c), t, c), y(0, c) = y0 be an initial value prob-
lem of the form (2) and suppose that the initial condition does not depend on the
parameter c ∈ R. We define the corresponding sensitivity equations by

z′i(t, c) =
∂fi
∂c

(
y1, . . . , yn, t, c

)
+

n∑
j=1

∂fi
∂yj

(
y1, . . . , yn, t, c

)
zj(t, c), zi(0, c) = 0,

for i ∈ {1, . . . , n}.

2.1. Multiple parameters and parameter in initial condition

The previous derivation generalizes straightforwardly to the case of multiple pa-
rameters (in the equation only), where we use the vector form c = (c1, . . . , cm)T ∈ Rm.
We define the sensitivity of the i-th variable with respect to the parameter cj by

zji (t, c) =
∂yi
∂cj

(t, c).

Proceeding similarly as in the derivation in the previous case (4) we obtain the
sensitivity equation for the sensitivity zji in the form

(zji )
′ =

∂fi
∂cj

+
n∑
k=1

∂fi
∂yk

zjk,

along with the initial conditions zji (0, c) = 0.
Until now we have discussed the case when the initial condition does not depend

on c. However, a parameter may appear both in the equation and in the initial
condition. Consider for example the following initial value problem:

y′(t, c) = f
(
y(t, c), t, c

)
, y(0, c) = (c, y0

2, . . . , y
0
n)T , (6)
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The sensitivity equations themselves are identical to those in Definition 3. As for
the initial condition, for the first variable z1 we have by Definition 2

z1(0, c) =
∂y1

∂c
(0, c) =

∂

∂c
c = 1

and for i ∈ {2, . . . , n} we get zi(0, c) = 0 as in the previous section.

3. Algorithms for parameter optimization

We now address the problem of optimizing the parameters in ODEs, i.e. finding
the set of parameters for which the solution of the ODE has the best agreement
with given data obtained e.g. from measurement or observation. There are many
possibilities how to approach this problem, see [6]. Our approach is the follow-
ing: The resulting function obtained as a solution to the considered model fits the
measured data in the least squares sense. More precisely, consider the initial value
problem (2) which depends on m parameters c = (c1, . . . , cm)T ∈ Rm. Suppose we
have a set of data points {(tj, Y j) ∈ Rn+1, j = 0, . . . ,M}. We want to find a vector
of parameters cmin ∈ Rm such that it satisfies the condition

cmin = argmin
c∈Rm

M∑
j=0

‖y(tj, c)− Y j‖2 = argmin
c∈Rm

M∑
j=0

n∑
i=1

(
rij(c)

)2
, (7)

where ‖· ‖ is the Euclidean norm in Rn and the residuals are defined by

rij(c) = yi(tj, c)− Y j
i . (8)

A minimization problem of the form (7) is called a nonlinear least squares problem.
In the case when rij(c) depend linearly on c, the problem reduces to (linear) least
squares. Since we are typically unable to find analytic solutions to our ODEs, we
cannot write the explicit formulae for rij(c). However, one can solve the equations
numerically, in our case by a fourth order Runge-Kutta method. Moreover, we can
also compute the partial derivatives of the residuals w.r.t. the parameters:

∂rij
∂ck

(c) =
∂yi
∂ck

(tj, c) = zki (tj, c), k ∈ {1, . . . ,m}.

We can therefore evaluate the partial derivatives of rij by solving the sensitivity
equations (also using Runge-Kutta) in parallel with the original ODEs. This allows
us to apply a gradient-based optimization algorithm for the numerical solution of
problem (7). Specifically, we use the Levenberg-Marquardt method, which produces
the a sequence of approximations to cmin using the iterative process

c(l+1) = c(l) − (JTl Jl + λlI)−1JTl r(c
(l)), l = 0, . . . ,

where Jl is the Jacobi matrix of the residuals rij w.r.t. the parameter vector c
at the l-th iteration. The constant λl is a ‘damping’ parameter which interpolates
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between Gauss-Newton method (λl = 0) and steepest descent (λl → ∞). There
are various choices of λl, we adopted the simple strategy from the original paper of
Marquardt [4], which proved sufficient in our case. The more basic method, Gauss-
Newton’s method, did not converge in several of our test cases or converged very
locally probably due to the near-singularity of the Jacobi matrices. The Levenberg-
Marquardt method can be viewed as Gauss-Newton using a trust region approach.

4. Compartmental epidemiological models

We will test the performance of the parameter optimization algorithm on sys-
tems of ODEs coming from mathematical biology, namely models for the spreading
of infections diseases in a population. Mathematical models in epidemiology may be
sorted into various categories according to different criteria – discretization of time
(models with discrete intervals and continuous time models), allowing for random-
ness (stochastic and deterministic models), structure of the population etc. Here we
take into account exclusively deterministic, continuous time models where the pop-
ulation is assumed to be a homogeneous continuum. Presumably the most widely
known representatives of this kind of models are the standard compartmental mod-
els. These models are based on the principle of dividing the population into several
labeled compartments (eg. Infectious, Recovered etc.) under certain simplifying
assumptions. The development of the epidemic is then determined by relations de-
scribing the flow between compartments, namely the rate of flow between a pair of
compartments. The model is formulated mathematically as a system of ODEs.

4.1. SIR model

The SIR model is the most basic compartmental model, cf. [5]. The population
is divided into three groups, each group a function of time:

• Susceptible (S) — those who have not come across the disease and can fall ill
if they come into contact with an infectious person, thus becoming infectious.

• Infectious (I) — those who spread the disease among the susceptible popula-
tion. After recovery they move to the compartment R:

• Recovered (R) — those who are removed from the compartment I either due
to recovery or due to death.

The relations between the compartments are based on four fundamental assumptions:

1. The vital dynamics is neglected and the size of the population is supposed to
be constant, we denote it by N > 0.

2. The population is assumed to be a homogeneous continuum, i.e. all people have
an equal number of contacts, the probability of the transmission of the disease
between a susceptible and an infectious person during their contact remains
constant and the infectious are equally distributed among the population.
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Figure 1: SIR model.

3. The rate of flow between the compartments I and R is directly proportional
to the size of the compartment I.

4. The recovered acquire immunity and cannot spread the infection. Those who
fall victims to the disease are treated as recovered.

Let r be the number of contacts of a person per unit time and let p ∈ (0, 1) be the
probability of the transmission between an infectious and a susceptible person when
they meet. It is desired to find the number of people an infectious person infects per
unit time. The fraction of susceptible population within the total population is S

N
.

Therefore, the infectious person meets a total of r S
N

susceptible people per unit time.
It follows that the number of infected susceptible people per infectious person per
unit time is pr S

N
. It proves convenient to define a new constant β = pr. Because the

total number of infectious people is equal to I, it can be concluded that the total
number of people an infectious person infects per unit time is βI S

N
.

We now determine the relation between compartments I and R. As stated in
the assumption 2, the rate of flow between the compartments I and R is directly
proportional to the size of the compartment I. Denote by γ the coefficient of pro-
portionality. The rate of flow is then equal to γI. The value 1

γ
can be interpreted as

the expected time spent in the compartment I, cf. [5].
The resulting model is described mathematically by the system of ODEs

S ′ = − β
N
SI, I ′ =

β

N
SI − γI, R′ = γI. (9)

The model is shown schematically in Figure 1. The system (9) is equipped with the
following initial conditions. Let I0 > 0 and R0 ≥ 0. We set

S(0) = N −R0 − I0, I(0) = I0, R(0) = R0. (10)

There are many generalizations of the SIR model, usually based on the introduc-
tion of various other compartments. For example, the SIQR model is based on the
additional assumption that every infectious subject is quarantined after the infec-
tion is detected. In addition to S, I, and R, we define a new compartment called
Quarantined denoted Q. The infectious move from the compartment I to the com-
partment Q with a rate of flow directly proportional to the size of I. Analogously,
the quarantined leave the compartment Q and move on to the compartment R with
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Figure 2: SIQR model.

a rate of flow directly proportional to the size of Q. The coefficients of proportion-
ality are denoted by α and δ, respectively. Finally, we assume that the quarantined
are unable to interact with the rest of the population. Thus the flow rate between S
and I in the SIR model has to be modified appropriately. The model is shown
schematically in Figure 2. The resulting system of ODEs reads

S ′ = − β

N −Q
SI, I ′ =

β

N −Q
SI − αI, Q′ = αI − δQ, R′ = δQ. (11)

Apart from SIR and SIQR, we considered several other variants, such as the
SEIR and SEIQR models and a different version of the SIQR model. Here E stands
for Exposed, this compartment contains infected people who are not infectious yet,
effectively adding a latency period to the standard model. We only mention these
models in passing, since they gave us results almost identical with the basic SIR
model on the considered data and thus present no added value in our case.

5. Numerical results

The approach to parameter optimization described in Sections 2 and 3 was imple-
mented in MATLAB and tested on COVID-19 epidemiological data from the Czech
Republic using the models from Section 4. However first we have tested the algo-
rithms on artificially generated data and, more interestingly, on a standard test-case
of data from a well studied and documented local influenza epidemic.

5.1. Influenza epidemic in a boarding school

The SIR model is derived under certain assumptions on the population and the
disease. This may significantly affect the accuracy of the model in practice. We
present here one case, which is as close as possible to satisfying the assumptions, the
case of an influenza outbreak in an English boarding school from 1978, cf. [5].

In total, 763 boys were present, one boy had an influenza-like illness from the
A/USSR/90/77(H1N1) virus. Over the next two weeks, a total of 512 boys developed
similar symptoms spending between three and seven days in the college infirmary.
We want to estimate the values of parameters β and γ from the SIR model (9)
corresponding to this epidemic. The population remains constant over the whole
period, i.e. N = 763. Contacts of the pupils were limited to the people in school,
thus forming a closed community – it seems that the population is as homogeneous as
possible. The presymptomatic period is short, no deaths occurred and the recovered
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Figure 3: Measured data of the flu epidemic and the estimate of compartment I.

acquired sufficient immunity. One problem concerning the available data may occur,
since in practical cases we do not possess the data which fit into the structure of the
SIR model precisely. The data consists of the number of students confined to bed
each day. Following [5], we assume the data to be from the compartment I.

Since we have data only from compartment I, we define the optimization problem
of the form: Find βm, γm satisfying

(βm, γm)T = argmin
(β̃,γ̃)T∈R2

D∑
j=0

|Ĩ(jτ, β̃, γ̃)− Ij|2, (12)

where τ = 1 corresponds to one day, which is the period with which we know the
number of infected, Ij on the j-th day, j = 0, . . . , D with D = 13. The initial
estimate is given by (β(0), γ(0))T = (1, 1

7
)T and the stopping criterion

‖(βm, γm)T − (βm+1, γm+1)T‖∞ < 10−5, (13)

was satisfied after six iterations of the Levenberg-Marquardt algorithm. The result-
ing estimate of the parameters is (βm, γm)T ≈ (1.6998, 0.4469)T . Figure 3 shows that
the estimated values of the compartment I are in good agreement with the data.
However, after closer examination we find that the results do not quite correspond
to the available data. Namely, the SIR model with the optimized parameters shows
that the total number of people who suffered from the illness is 744, whereas the true
number was 512. In addition, the value 1

γ
≈ 2.24 represents the expected time (in

days) one spends in the Infectious compartment. This value is less then the observed
value, which was three to seven days. This suggests that even in this simple case
some unexpected issues limiting the accuracy of the model occur. This is a conse-
quence of several facts. As stated above, the available data do not fit the model
precisely – a person diagnosed with the illness has limited possibilities of spreading
the disease because their contacts with the susceptible population are restricted. In
addition, the pattern of the SIR model may not be entirely convenient for this par-
ticular disease. In order to adjust the model in accordance with the disease we need
additional medical information which is not available.
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Figure 4: COVID-19, Infectious: Full population (left), effective population (right)

5.2. COVID-19 epidemic in the Czech Republic

Finally, we apply the presented numerical methods to the COVID-19 epidemi-
ological data from the Czech Republic provided by the Ministry of Health of the
Czech republic [3]. We chose the period from March 13, 2020, to May 24, 2020. The
reasons are the following: On 13 March, the key measure forbidding retail sales and
the sales of services in business premises came into effect and on 25 May the crucial
part of the restrictive measures ended. It is therefore reasonable to assume that β
and γ remain constant within this period, since adopting some restrictive measures
against the spread of the disease decreases the value of parameter β, because the
number of contacts of a person is reduced. The chosen period was the longest during
the epidemic, where external conditions remained the same.

We optimized the parameters β and γ using the data from the compartment I
only, i.e. the function to minimize is of the form (12) with D = 71 and N = 1.065·107.
The initial guess of the parameters is again given by (β(0), γ(0))T = (1, 1)T . The
stopping criterion (13) was achieved after 10 iterations. The computed estimate
is (βm, γm)T ≈ (4.6687, 4.5244)T . The results from compartment I can be seen in
Figure 4 (left). We note that the computed estimate gives the expected time a person
remains infectious 1

γm
≈ 0.22 days, which is clearly unrealistic. Moreover, the model

shows that the total number of recovered people at the and of the considered time
interval is 6.15 · 105, while the actual value was 7750.

The reason why the SIR model gives such unrealistic results for the presented data
is that the number of infected was very small in proportion to the total population
of the Czech Republic and the population was not homogeneous, since the epidemic
consisted of small local outbreaks, thus violating one of the basic assumptions of the
SIR model. This consideration leads us to the introduction of an effective population
size. The idea is to use a reduced population size which reflects the assumption of
homogeneity within that smaller sub-population. The question is how to determine
the size of the effective population. Our approach is to consider N not as a fixed
constant (as it has been until now), but to treat it as an unknown parameter. For-
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mally, the change is that instead of the parameter vector (β, γ)T for the SIR model,
we now have the extended parameter vector (β, γ,N)T . We note that N is present
not only in the equations (9), but also in the initial condition (10), thus we use the
approach from Section 2.1.

The initial guess was (β(0), γ(0), N (0))T = (1, 1, 106)T . The computed results are
(βm, γm, Nm)T ≈ (0.2587, 0.0444, 8593) and were reached after 50 iterations. Agree-
ment with measured data has improved, cf. Figure 4 (right). The estimated total
number of recovered is 7636, which is a good approximation of the true value 7750.
The expected length of the infectious period is approximately 22 days. This is close
to the length of the potential maximal infectious period of 15 to 21 days estimated
in meta-analysis [1]. The estimate of the basic reproduction number R0 = βm

γm
≈ 5.8

exceeds the values in the interval 2.4 to 3.4 estimated by meta-analysis.
To conclude, the presented method of the effective population considerably in-

creased the accuracy of the basic SIR model in the situation when the SIR model
itself failed due to high inconsistency of the measured data with the assumptions
of the model. We have also tried other compartmental models such as the SIQR
model, however not much improvement was observed over the basic SIR model with
optimization of the effective population size.
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Abstract: The widely used method for solution of impacts of bodies, called
the penalty method, is based on the contact force proportional to the length
of the interpenetration of bodies. This method is regarded as unsatisfactory
by the authors of this contribution, because of an inaccurate fulfillment of the
energy conservation law and violation of the natural demand of impenetrability
of bodies. Two non-traditional methods for the solution of impacts of bodies
satisfy these demands exactly, or approximately, but much better than the
penalty method. Namely the energy method exactly satisfies the conservation
of energy law, whereas the kinematic method exactly satisfies the condition of
impenetrability of bodies. Both these methods are superior in comparison with
the penalty method, which is demonstrated by the results of several numerical
examples.

Keywords: contact / impact of elastic bodies, finite element method, method
of dicretization in time, energy and kinematic approaches.

MSC: 74M15, 74S05, 74S20

1. Introduction

Robust, reliable and effective computational analysis of collision of deformable
bodies belongs to the important tasks of engineering mechanics, conditioned by the
successful cooperation in formulation of physical models with reasonable parameters,
evaluable from rather simple experiments, in mathematical and numerical analysis
and in software development. Models based on the conservation principles of clas-
sical thermomechanics by [4], supplied by appropriate constitutive relations, lead
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to partial differential equations or even to their systems of hyperbolic type, sup-
plied with the pair of Cauchy initial conditions for displacements and their rates,
with the Dirichlet boundary conditions for prescribed supports and with the Neu-
mann boundary conditions for exterior loads, together with the contacts / impacts
of colliding deformable bodies. This brings substantial nonlinearities to the system,
even under the hypothetical, not very realistic assumptions on both the geomet-
rical linearity (small strains) and the physical one (linear reversible strain - stress
relations). Theoretical formulations containing variational inequalities, after the dis-
cretisation both in the time and in the Euclidean space, 3-dimensional in general,
replace their exact fulfilment by the introduction of some additional penalty terms,
as introduced by [23]. Other serious problems are the incorporation of contact fric-
tion, non-expensive search for potential contacts – cf. the distributed and parallel
computations required by [6] and [17], as well as the description of contact geometry,
characterized as node-to-node, node-to-segment or segment-to-segment approaches.

The progress in this research area in more than last 3 decades can be traced from
the review articles [2], [7], [10] and [18]. When treating contact problems within the
finite element method, 7 steps of analysis should be followed by [22]: i) continuum
based contact kinematics, ii) constitutive equations for contact interfaces, iii) weak
form of contact contributions and overall solution strategies for contact problems,
iv) discretisation of contact surfaces, v) algorithms for the integration of constitutive
equations in the contact area, vi) contact search algorithms, vii) adaptive meth-
ods for contact problems. The detailed primal and dual variational formulations of
contact problems are demonstrated by [15]. The comparison of classical Lagrange
multiplier and penalty computational approaches is presented by [20]. The classical
recommendations for the choice of penalty stiffness, needed for the evaluation of the
contact force proportional to the length of the interpenetration of bodies, are pre-
sented in [3]; the so-called exact penalty improvement, working with the updated
penalty stiffness, was suggested by [13].

Other alternatives can be found in literature, too, as i) energy conserving algo-
rithms, introduced by [9], revisited by [24], applying certain penalty-based regular-
ization, or ii) perturbed Lagrangian formulations, stemming from [14], working with
certain kinematic conditions, developed by [12]. The implementation of b) by [1]
utilizes augmented Lagrange multipliers to force all prescribed kinematic conditions,
which requires an additional iterative solutions of systems of algebraic equations,
unwelcome for explicit time discretisation. Another implementation of b) by [21]
avoids such iterative process, but leads to a non-physical increase of energy at con-
tact / impact interfaces typically, which must be suppressed by some artificial com-
putational reduction of contact forces.

Two promising computational methods, presented in this paper, can be seen as
certain variants of i) and ii). We shall refer to them as to i) the energy method and
to ii) the kinematic method, although such nomenclature is not quite unified in the
literature, to highlight i) the exact energy conservation, or ii) the exact fulfillment
of kinematic conditions, involved in any space- and time-discretised computational
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scheme. Assuming the space discretisation using the finite element technique, we
shall work with the explicit time integration, due to the need of short time steps,
forced by collision phenomena. The approach i) generalizes the 2-dimensional for-
mulation of [16] naturally. The approach ii) here does not evaluate any contact
forces as separate variables, but its specific use in the explicit time stepping forces
the correction of nodal displacement at all potential interfaces under the assump-
tions of a) impenetrability of colliding bodies, b) evaluation of exact collision time tc,
c) decomposition of any time step of length Dt, considered as [0,Dt] for simplicity,
to [0, tc] and [tc,Dt], d) conservation of momentum of contact entities and e) perfectly
inelastic collision.

After this introductory remarks (Section 1) we shall come to the general discus-
sion of collision of bodies (Section 2), to the energy method (Section 3) and to the
kinematic method (Section 4), supported by some illustrative examples (Section 5).
The brief concluding remarks (Section 6) will be oriented to the need and priorities
of further research.

2. Collisions of bodies

To demonstrate the advantages of 2 announced methods, we shall consider a fi-
nite number of deformable bodies discretised into finite elements, with the surfaces
consisting of flat triangles, whereas mass is assigned to nodes. These bodies can
arbitrarily collide.

2.1. Finding the time and space coordinates of the collision

For simplicity, we shall suppose that each line consists only of straight elements
and each surface, or a boundary of a solid, is decomposed to triangles. That being the
case, following the node-to-segment approach, just two kinds of collision can occur:
collision of two line segments (element edges), or collision of a node and a triangle
surface segment, as shown by Fig. 1 schematically. All parameters of collision will
be evaluated using the explicit method, with sufficiently small time steps. In each
such time step, constant velocities and geometric linearity are assumed for finding
the time and position of the contact of discretised bodies.

Let us have a line segment with its end points A,B and another line segment with

a) b)

Figure 1: Two possibilities of collision of discretised bodies: a) edge to edge and b)
node to surface.
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its end points C,D, or, alternatively, a triangle surface element with its nodes A, B, C
and another node D. At the beginning of present time step, t = 0 for simplicity, all
these 4 points have their initial positions given by vectors xi(0), and in such time
step they move by velocities vi, assumed as constant during the whole time step.
Thus, in any positive time t we come to positions

xi(t) = xi(0) + tvi for all i ∈ {A,B,C,D} . (1)

We need to find out, whether a) the line segments AB and CD, or b) the node D
and the surface triangle ABC, will collide in the considered time step. Let P be
the point of collision in the case a) and Q such point in the case b). For b) Q
will be the point of the triangle ABC hit by the point D. At the collision time tc
all nodes A, B, C, D must lie in the same plane, thus for a known collision time
their position can be determined, It can be also detected whether the points of the
collision lie inside the pertinent segments, i. e. a) if the points P,Q lie inside the line
segments AB and CD, or b) the point Q lies inside the triangle ABC. For the sake
of brevity of the following formulae (2), (3) and (4), we shall write xi instead of xi(tc)
now.

At first let us investigate whether the point D lies in the plane given by the
points A, B, C. The symbols × and · will be reserved for the vector and scalar
products in the 3-dimensional real Euclidean space. The normal vector to this plane
can be then defined as (xB(tc)−xA(tc))× (xC(tc)−xA(tc)). If the point D lies in the
plane ABC, then the vector connecting him with an arbitrary point of this plane,
as with A in particular, must be perpendicular to the above introduced normal one;
this can be written as

(xD − xA) · ((xB − xA)× (xC − xA)) = 0 ; (2)

this cannot hold for any point D not belonging to the plane ABC for any non-
degenerated triangle ABC, i. e. a triangle with non-zero area. Rearranging (2)
formally, we obtain

xD · (xA × xB + xB × xC + xC × xA) = xA · (xB × xC) . (3)

Substituting (1) with t = tc into (3), we come to the cubic equation

C3t
3
c + C2t

2
c + C1tc + C0 = 0 , (4)

C0 = xD · (xA × xB) + xD · (xB × xC) + xD · (xC × xA)− xA · (xB × xC) ,

C1 = xD · (xA × vB) + xD · (vA × xB) + vD · (xA × xB) + xD · (xB × vC)

+ xD · (vA × xC) + vD · (xB × xC) + xD · (xC × vA) + xD · (vC × xA)

+ vD · (xC × xA)− xA · (xB × vC)− xA · (vB × xC)− vA · (xB × xC) ,

C2 = vD · (vA × xB) + vD · (xA × vB) + xD · (vA × vB) + vD · (vB × xC)

+ vD · (xA × vC) + xD · (vB × vC) + vD · (vC × xA) + vD · (xC × vA)

+ xD · (vC × vA)− vA · (vB × xC)− vA · (xB × vC)− xA · (vB × vC) ,

C3 = vD · (vA × vB) + vD · (vB × vC) + vD · (vC × vA)− vA · (vB × vC) .
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Clearly (4) can be solved analytically by the Cardano formulae, or iteratively, using
e. g. the Newton method. If its positive solution tc exists, not exceeding the time
step Dt, it refers to the collision time; in the case of multiple solutions the smallest
one corresponds to the needed first collision time.

Its smallest positive solution tc (if exists, not exceeding the time step Dt) refers
to the first collision time. Consequently, all position vectors xi(tc) for the points
i ∈ {A,B,C,D} can be evaluated by (1).

Figure 2: Definition of the contact plane by the nodes A,B,C.

2.2. Determination of the contact plane and its properties

Let us notice that the determination of contact time and location is based on
the existence of a plane containing all points A,B,C,D. Such plane, as sketched
by Fig. 2, is determined by an arbitrary triple selected from these 3 points, e. g.
A,B,C for simplicity. Let us introduce a local coordinate system, whose 2 basis
vectors e1, e2 can be chosen as arbitrary orthogonal vectors in this plane, whereas
the remaining basis vector e3 is normal to this plane, with an appropriate orientation
to satisfy e1 · (e2 × e3) > 0; thus we have a new coordinate system x∗ = x∗1e1 +
x∗2e2+x∗3e3. In particular, we can introduce the unit vectors e∗

1 = (xC−xB)/|xC−xB|,
b = (xA − xC)/|xA − xC |, e3 = b × e∗

1 and e∗
2 = e∗

3 × e∗
1. Thus we can work

the local transform of coordinates x∗ = Rx, containing certain rotation matrix
R = (e∗T

1 , e∗T
2 , e∗T

3 )T. Clearly x∗3 = 0 only for all points lying in the contact plane,
whereas 2 remaining axes create a contact plane coordinate system, needed in our
following considerations.

The contact plane can be used for definition of arbitrary friction models. Here,
due to the limited extent of this paper, let us introduce a very simple property of
such contact plane, which can be characterized as “the elastic friction”, based on
the introduction of 2 limit cases. The 1st one can be called “the zero friction”,
which means that both surfaces of elastic bodies are perfectly slippery, so no in-
plane contact force and no friction dissipation can occur. The 2nd one can be called
“the absolute friction”, which means that no mutual sliding can occur during the
collision, thus, no dissipation occurs in this case as well. More general cases of the
elastic friction can be received as linear combinations of these 2 limit cases. Potential
dissipation could be easily put into the energy balance in the energy method.
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a) b)

Figure 3: Collision of: a) two line segments or edges, or b) a node and a triangle
surface.

2.3. Determination of the positions and velocities of the colliding points

To be able to determine the positions and velocities of all colliding points, we
shall discuss only collisions of a) two segments or edges and b) a node and a triangle
surface, as sketched by Fig. 3, in details. Collisions of the types node-to-node, or
segment-to-segment (rarely exact) can be derived from a), b) using the limit passage.
For the evaluation of the contact force direction, it is necessary to accept a suitable
hypothesis. Let P,Q be the colliding points; thus, for the case of a collision of a node
and a general point of a surface segment let us assume Q ≡ D.

2.4. Collision of two segments or edges

In the case a) positions of the colliding points P,Q can be determined as the
intersection points of 2 lines, whose equations for real parameters s1, s2 are xP (s1) =
xA + s1(xB − xA), xQ(s2) = xC + s2(xD − xC), and, moreover, xP (s1) = xQ(s2) is
required, thus

xA + s1(xB − xA) = xC + s2(xD − xC) . (5)

For the evaluation of 2 parameters s1, s2 we have 3 equations (5) now; arbitrary 2 of
them are sufficient for practical computations. Taking only the line segmentsAB,CD
into account, unlike the whole lines, we have s1 ∈ [0, 1] ⇒ P ∈ AB, s2 ∈ [0, 1] ⇒
Q ∈ CD evidently. Consequently, we can write xP (tc) = xQ(tc) and

xP = xANA + xBNB , xQ = xCNC + xDND , (6)

vP = vANA + vBNB , vQ = vCNC + vDND ,

taking NA = s1, NB = 1− s1, NC = s2, ND = 1− s2.

2.5. Collision of a node and a triangle surface element

Coming back to the case b), we have Q = D, thus xQ(tc) = xD(tc). Here we
need the usual area coordinates Nj = Aj/A for j ∈ {A,B,C} where the areas Aj
are evident from Fig. 3 and A is their sum. If any of Nj < 0, the pertinent point
does not lie in the triangle ABC. The vectors xQ and vQ in the plane ABC can be
obtained in the terms of coordinates Nj as

xQ = xjNj , vQ = vjNj . (7)
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3. Energy method

Let us suppose that P,Q are the colliding points, as in the case a). The similar
details of the case b) are left to the curious reader. For the simple implementation
of friction, let us consider two limit cases, announced by Section 2. We shall work
with the mutual velocity of the points P,Q, denoted as vPQ(t) = vQ(t)− vP (t), and
with the contact force fPQ in this case, which can be interpreted as an internal force,
acting by its components fP and fQ in sense of the 3rd Newton law. Their upper
indices a, z will refer to the absolute friction, or to the zero friction, respectively.

3.1. Absolute friction

At first let us assume that the friction is absolute, without any slippage between
the collision points P,Q during the contact at t = tc. Thus, these points will bounce
in the same relative direction vPQ as before the collision; faP = −faQ evidently. The
unit vector in the direction of fQ, needed in the following considerations, can be
introduced as eaQ = faQ/|faQ| = vPQ(tc)/|vPQ(tc)|.

3.2. Zero friction

In this case, the direction of the contact force is in the direction n perpendicular
to the plane given by the triangle ABC; this can be extended from b) to a) naturally,
without all details here. Thus we have n = (xB − xA)× (xD − xC). We are allowed
to introduce nQ using the relations n ·vPQ ≥ 0⇒ nQ = n, n ·vPQ ≤ 0⇒ nQ = −n.
Finally, we can evaluate, similarly to eaQ, eaQ = f zQ/|f zQ| = nQ/|nQ|.

3.3. General friction

The simplest way for the interpolation between 2 preceding cases is to consider
eQ = βeaQ + (1 − β)ezQ, working with certain friction coefficient β ∈ [0, 1]. Conse-
quently, we can write eQ = fQ/|fQ| = eQ/|eQ|, |fQ| = |fP |, fQ = −fP .

3.4. Determination of the magnitude of the contact force

The direction of the contact force is already known; its magnitude remains to
be determined. We shall assume that the above introduced forces cause such accel-
erations of the nodes A,B,C,D that the velocities and positions of these nodes at
the end of certain fictious time step Dt conserve the total potential energy Π, de-
creased by dissipation caused by plasticizing or damage due to the collision, i. e. its
new value can be expressed as Π×(fPQ,Dt) = Π−E where E denotes the dissipated
energy, coming from additional considerations about irreversible plastic strains, frac-
ture, etc. The acceleration of the point P , caused by the force fP , is aP = fP/mP

where mP is the mass assigned to the point P , which causes the velocity increment
∆vP = aPDt. For the point Q we can write aQ = fQ/mQ, ∆vQ = aQDt similarly.
Our distinguishing between the cases a) and b) will be useful in the following con-
siderations. The obvious motivation is that the points P,Q are not the nodes in the
original discretised system, therefore no discretised mass is assigned to them.
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3.5. Collision of two line segments or edges

The substitution of fP , fQ with fA, fB, fC , fD can be done by the static equivalence
of forces fP = fA+fB, fQ = fC+fD, together with fANA+fBNB = o, fCNC+fDND = o,
coming from the equivalence of moments; o denotes the 3-dimensional zero vector.
Solving this system of 4 linear algebraic equations, we obtain the formally simple
relation

fi = NifP for any i ∈ {A,B,C,D} (8)

applying the coefficients Ni stemming from (6).

3.6. Collision of a node and a triangle surface segment

Since Q = D in this case, the calculated values for the node D can be applied
to the collision point Q, too, whereas for the collision point P the needed values of
force, acceleration, velocity and position need to be expresses by the nodal values of
the triangle ABC. Let us assume that all forces fi for i ∈ {A,B,C} are parallel,
in the direction of the unit vector eQ. The static equivalence conditions then are
fP = fA + fB + fC , xP × fP = xA × fA + xB × fB + xC × fC ; moreover the identity
condition fQ = fD is valid. Consequently, expressing fQ as eQ|fQ|, we come to
|fP | = |fA|+|fB|+|fC |, xP×eQ|fP | = xA×eQ|fA|+xB×eQ|fB|+xC×eQ|fC |, |fQ| = |fD|.
This implies (8) again, using the coefficients Ni from the text preceding (7).

3.7. Calculation of the change of the position

For any i ∈ {A,B,C,D} the increments of velocities in the considered time step
can be evaluated as ∆vi(fP ,Dt) = (fi/mi)Dt, thus, with respect to (8), we receive
v×
i (fP ,Dt) = vi + ∆vi in the form

v×
i (fP ,Dt) = vi + (Ni/mi) fPDt . (9)

Consequently, since the increments of displacements can be expressed as ∆ui(fP ,Dt) =
viDt then u×

i (fP ,Dt) = ui + ∆ui gets the form

u×
i (fP ,Dt) = ui + viDt+ (Ni/mi) fPDt2 . (10)

Both (9) and (10) will be needed in the calculation of the change of energy for the
contact forces fP , fQ during the fictious time step Dt, which consists of 3 parts: i) the
change of the kinetic energy ∆Πk, ii) the change of the elastic potential energy Πσ

and iii) the change of the potential energy of the position ∆Πp.

3.8. Calculation of the change of the kinetic energy

During the fictitious time step, only the velocities of the nodes A,B,C,D are in-
fluenced by the contact force. The kinetic energy of these mass points before and after
the collision, i. e. at the beginning and at the end of the fictitious time step, using i ∈
{A,B,C,D} as the Einstein summation index here, is Πk = (mi/2) vi ·vi, at its end
Π×
k (fP ,Dt) = (mi/2) v×

i · v×
i , thus, applying (9), for ∆Πk(fP ,Dt) = Π×

k (fP ,Dt)−Πk

we have ∆Π×
k (fP ,Dt) = (mi/2)(2vi ·∆vi + ∆vi ·∆vi), which yields

∆Πk(fP ,Dt) = NivifPNiDt+ (N2
i /(2mi)) fP · fPDt2 . (11)
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3.9. Calculation of the change of the elastic potential energy

Since only the positions of nodes A,B,C,D will be influenced by the contact
force, only the elastic energy of such j-th elements is relevant here.

∆Πσ(fP ,Dt) = f ej ∆dek ; (12)

here f ej and ∆dej form the vectors of the element nodal forces and of the element
deformation parameters, derived using (10), respectively; e must be understood as
an element index and j as an index referring to the above introduced list, both taken
as the Einstein summation indices. Let us remind that ∆ui = viδ is satisfied for
other nodes than i ∈ {A,B,C,D}, too.

3.10. Calculation of the change of the elastic potential energy

Since only the positions of the nodes will change in the (very short) fictitious
time step, the change of the elastic potential energy ∆Πσ(fP ,Dt) = −∆uif

ext
i , f ext

i

being the components of external forces, can be formulated as

∆Πp(fP ,Dt) = (Ni/mi) fP · f ext
i Dt2 . (13)

3.11. Final evaluation of the magnitude of the contact force

The aim of this method is to satisfy the energy conservation law in collisions of
bodies exactly. For all elastic bodies this means that the total energy after collision
must remain the same as before the collision. To achieve this goal, it is necessary to
adopt the equation of the energy conservation into the solution. The change of total
energy during the collision must be zero. Since we have fP = ep|fP | in all cases – cf.
the discussion on friction, in the fictious time step we are allowed to write

∆Πk(|fP |,Dt) + ∆Πσ(|fP |,Dt) + ∆Πp(|fP |,Dt) + E = 0 , (14)

replacing fP in all additive terms by (11), (12) and (13) by |fP | only; E here refers
to the eventual energy dissipation by plasticizing or damage. It is clear that we
are looking for a nontrivial solution |fP | of (14), i. e. for its non-zero root, which
can be performed e. g. using some inexact version of Newton iterations, avoiding
the evaluation of the derivatives of particular additive terms of the left-hand side
of (14). The 1st estimate for |fP | can exploit the fact that the contribution of the
elastic potential energy by (13) can be neglected for this purpose, as well as the
contribution of E, not analyzed in more details here; therefore (14) degenerates to
a quadratic equation, which can be solved analytically. Thus we have all data for
the evaluation of (9) and (10), thus all positions of the nodes A,B,C,D at the end
of the time step can be adjusted as

x×
i = xi + wtcvi + (1−w)tcv

×
i , (15)

using some appropriate weight w ∈ [0, 1], e. g. w = 1/2 (if no better arguments for
this choice are available).
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4. Kinematic method

The fundamental assumption for the collision of bodies Ω1 and Ω2 in this method
is the condition of their impenetrability, i. e. Ω1 ∪ Ω2 must be empty. We have the
discretised masses mi related to the points i ∈ {A,B,C,D}, as in Section 3. The
velocity vectors before the impact (a priori known) are vi, the velocity vectors after
the impact (undetermined yet) are v×

i . Altogether, four velocity vectors have to be
determined, i. e. 12 scalar unknowns. The equations for determining the components
of v×∗

i can be obtained from the law of conservation of linear and angular momentum,
then from kinematic condition, expressing the impossibility of change of shape of any
colliding line or triangle in time of the impact, and lastly from the properties of the
contact plane and the influence of friction. This approach is applicable to both cases
a) and b) from Section 2. The obvious transformation to the local coordinate system
v∗
i = Rvi is available again, as well as its inverse vi = RTv∗

i .

4.1. Absolute friction

We shall start with the choice β = 1, as introduced in Section 3.

4.2. Conservation of momentum

Generally, due to the conservation of linear momentum we can writemiv
×∗
i =miv

∗
i ,

i ∈ {A,B,C,D} being considered as the Einstein summation index again. The con-
servation of angular momentum can be related to an arbitrary point, e. g. to the
origin of coordinates; then it reads

x∗
i ×miv

×∗
i = x∗

i ×miv
∗
i . (16)

For the case a) the conservation of angular momentum can be related to the point
P ≡ Q and consequently, we can write two vector equations

mANBv×
A −mBNAv×

B =mANBvA −mBNAvB , (17)

mCNDv×
C −mDNCv×

D =mCNDvC −mDNCvD .

4.3. Kinematic conditions

For the case b) all in-planar velocity components must satisfy the condition of
rigid body motion in the element plane. It will be useful to omit all directions x3i for
both position and velocity vectors, since they have no influence on deformation of
the involved elements All upper indices ∗ will be omitted for brevity, considering the
local coordinate system in the compatible way with Section 3. Let Im be the mass
moment of inertia, related to the axis x3, in the center T of gravity of the total mass
mT = mA+mB +mC +mD, due to the absolute friction and the condition vD = vQ.
Then the angular momentum to such axis is Imω = (xi1−xT1)mivi2−(xi2−xT2)mivi1,
where ω denotes the angular velocity to the axis x3, introduced as ω = Im/I, I being
the moment of inertia to such axis. Then we have v×T1 = miv

×
i1/mT , v×T2 = miv

×
i2/mT .

Taking also the impact rigidity into account, for j ∈ {A,B,C} we can write finally

v×j1 = v×T1 − ω(xj2 − xT2) , v×j1 = v×T2 + ω(xj1 − xT1) . (18)
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4.4. Contact conditions, influence of friction

In Section 4 we have still considered, up to now, β = 1, thus v×
P = v×

Q, as ex-

plained in Section 3. Thus for the case a) we can writeNAv×
A+NBv×

B =NCv×
C+NDv×

D,
whereas for the case b) with v×

D = v×
Q we have Njv

×
j = v×

D, using the notation com-
patible with (18) and (17).

4.5. Zero friction

For β = 0 all velocity vector components parallel to the sliding plane remain the
same after impact as before, i. e. v×1 = vi1, v×2 = vi2, which decreases the number
of unknowns from 12 to 4. Due to the conservation of linear momentum we have
miv

×
i3 = mivi3. Using the same notation as in the considerations related to β = 1, the

conservation of angular momentum gives two scalar equations xi1miv
×
i3 = xi1mivi3,

xi2miv
×
i3 = xi2mivi3. The velocity vector components perpendicular to the sliding

plane at the colliding points P,Q after the impact are the same, i. e. v×Q3 = v×P3,
respecting the impenetrability assumption, which provides the last needed equation.
Then for the case a) we have NAv

×
A3 +NBv

×
B3 = NCv

×
C3 +NDv

×
D3 and for the case b)

Njv
×
j3 = v×D3 analogously.

4.6. General friction

For β ∈ [0, 1] the interpolation v× = βva×∗
i + (1−β)vz×∗

i for all i ∈ {A,B,C,D}
can be recommended again, as in Section 3.

4.7. Adjustment of the coordinates of nodes

Let us remind the transformations of the type v×
i = RTv×∗

i , needed for the final
update. Thus we come back to (15). Let us also remark that it is useful to keep the
sign of the difference of velocities v×

i of the colliding points P,Q in memory until the
next time step: if the sign does not change then the contact must be still handled,
unlike the opposite case.

5. Illustrative examples

The first example is the problem of an elastic rod impacting a rigid barrier. The
input values were taken from [8]. Fig. 4 shows a model of a rod of total length
L = 1 m, cross section area A = 1 m2, Young’s modulus E = 1 MPa and mass
density ρ = 1 kg/m3, divided into 100 elements with its mass discretised to the nodes,
which is situated at distance g0 = 0 m towards the rigid barrier; its initial velocity
is v0 = 1 m/s. The time step for calculation Dt = 10−8 s is applied. Fig. 5 shows
the comparison of results obtained by the energy, kinematic and penalty method,
particularly displacement of the impacting node and the change of the components
of energy.

Figure 4: An elastic rod impacting a rigid barrier.
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Figure 5: Time distribution of displacement and energy balance for a) the penalty
method, using the penalty stiffness P = 1011 Nm−1, as introduced by [3], b) the
energy method and c) the kinematic method.

The second example presents collision of two symmetrical cylinders, described
in detail in [11], where the input data were also taken from. Fig. 6 shows two
identical cylinders with radius R = 4 m, Young’s modulus E = 1000 MPa, Poisson’s
ratio ν = 0.2 and mass density ρ = 1000 kg/m3 moving with the initial velocity
v0 = 2 m/s against each other. The time step for calculation Dt = 5 · 10−6 s is
applied. Symmetry boundary conditions are applied. Fig. 7 demonstrates the time
propagation and stress in time for the energy and kinematic methods separately,
whereas Fig. 8 shows the time distribution of energy balance.
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Figure 7: Stress in the horizontal direction σx[N/m2] during the wave propagation
in times t = 0.1, 0.2, 0.3, 0.4 s.
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6. Conclusions

The most commonly used method for impact of bodies, called the penalty method,
showed itself as unsatisfactory. This method is based on the idea that the contact
force is proportional to the penetration of the colliding bodies. Therefore a violation
of the principle of impenetrability of bodies is assumed and even necessary for it
to work. This method also does not satisfy the conservation of energy law with
sufficient precision and provides rather random results. Both methods introduced in
this paper validated their superiority over the penalty method. The energy method
satisfies the conservation of energy exactly, whereas the kinematic method preserves
the principle of impenetrability. In the last decades several improvement of the
penalty method and new approaches to the impact of bodies have been published,
some of them being mentioned in References.

The authors of this paper have introduced two methods for transient analysis of
impacts of bodies suitable for the explicit method. Both methods proved their good
accuracy, efficiency and robustness. The energy conservation law is fulfilled very well
without necessity of substantial shortage of the global time step of numerical inte-
gration and without necessity of introducing additional computational parameters,
understanding them and determining their values. Both methods take the exact
time of the impact for each contact into consideration. In the case of the kinematic
method, all deformations, velocities and accelerations are determined with help of
division of the time step into its substeps before and after the impact. The energy
method introduces the equation of conservation of energy in each time step when
a contact occurs, so all unwanted energy changes are eliminated.

The suggested approaches enable contacts of one surface with more nodes, as
well as of one line with more lines, in one time step, as presented by the second
numerical example. The methods do not demand any use of neither penalty method
nor Lagrangian multipliers.

As for the problem of friction, all methods of static friction, based on the idea
of pulling a burden on a surface, are problematic for the impact analysis. Unlike
them, a very general model of the impact friction, assuming the theoretically clear
limits of the friction, namely the zero friction and the absolute friction, is introduced
in this paper. Then the real friction can be seen as a linear combination of those
two limit cases. The friction coefficient, which is the relative weight factor of the
absolute friction, can be determined by simple experiments.
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Abstract: With the emergence of mixed precision hardware, mixed pre-
cision GMRES-based iterative refinement schemes for solving linear systems
Ax = b have recently been developed. However, in certain settings, GMRES
may require too many iterations per refinement step, making it potentially
more expensive than the alternative of recomputing the LU factors in a higher
precision. In this work, we incorporate the idea of Krylov subspace recycling,
a well-known technique for reusing information across sequential invocations,
of a Krylov subspace method into a mixed precision GMRES-based iterative
refinement solver. The insight is that in each refinement step, we call precon-
ditioned GMRES on a linear system with the same coefficient matrix A. In
this way, the GMRES solves in subsequent refinement steps can be accelerated
by recycling information obtained from previous steps. We perform numer-
ical experiments on various random dense problems, Toeplitz problems, and
problems from real applications, which confirm the benefits of the recycling
approach.

Keywords: GMRES, iterative refinement, mixed precision, recycling
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1. Introduction and background

There are various algorithms for solving linear systems of equations Ax = b,
where A ∈ Rn×n and x, b ∈ Rn. One approach is iterative refinement (IR) which
is based on improving the approximate solution in each refinement step [23]. Itera-
tive refinement typically starts with using Gaussian elimination with partial pivot-
ing (GEPP) to compute an initial approximate solution. Then using the L and U
factors of A and the residual ri, the system Adi+1 = ri is solved for the correction
term di to improve the approximate solution via xi+1 = xi + di+1. A general IR
scheme is shown in Algorithm 1.

Recently, mixed-precision capabilities have become available in hardware, which
can have significant performance benefits [4, 1]. In Algorithm 1, the authors in [6]
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used three hardware precisions: ur for computing the residual, uf for the LU factor-
ization, and working precision u for the remaining calculations. There is also a fourth
“effective solve precision” us, which depends on the particular solver and precisions
used in line 5. The idea is that low precision can be used for the LU factorization,
which is the most expensive part of the computation, and accuracy can be recovered
through use of higher precisions in other parts of the computation. Indeed, it has
been shown that on NVIDIA V100 GPUs, using half precision instead of double
precision for the LU factorization can give over 4× speedups; see [12, Figure 3(b)].
Throughout this work we assume that uf ≥ u ≥ ur e.g., (uf , u, ur)= (half, single,
double).

Algorithm 1 General Iterative Refinement Scheme

Input: n× n matrix A; right-hand side b; max. number of refinement steps imax.
Output: Approximate solution xi+1 to Ax = b.

1: Compute LU factorization A ≈ LU in precision uf .
2: Solve Ax0 = b by substitution in precision uf ; store x0 in precision u.
3: for i = 0 : imax − 1 do
4: Compute ri = b− Axi in precision ur; store in precision u.
5: Solve Adi+1 = ri in precision us; store di+1 in precision u.
6: Compute xi+1 = xi + di+1 in precision u.
7: if converged then return xi+1 in precision u. end if

For a given combination of precisions and choice of solver, it is well-understood
under which conditions Algorithm 1 will converge and what the limiting accuracy
will be. The constraint for convergence in line 7 is usually stated via a constraint on
the infinity-norm condition number of the matrix A. Table 1 shows the constraints
on κ∞(A) required for convergence of the normwise relative backward and forward
errors to the level of the working precision for various precision combinations and
solvers used in this study. For further information, see, e.g., [6, 3]. For a description
of stopping criteria used for detecting convergence within iterative refinement in
practice, see, e.g., [9], [19].

From Table 1, we see that if the computed LU factors are used to solve for
the correction in line 5, often referred to as “standard IR” (SIR), then κ∞(A) =
‖A‖∞‖A−1‖∞ must be less than u−1

f in order for convergence to be guaranteed. To
relax this constraint on condition number, the authors of [5] and [6] devised a mixed
precision GMRES-based iterative refinement scheme (GMRES-IR). In GMRES-IR,
the correction equation in line 5 is solved via left-preconditioned GMRES, where
the computed LU factors of A are used as preconditioners. This results in a looser
constraint on condition number in order to guarantee the convergence of forward and
backward errors; in the case that the preconditioned matrix is applied to a vector
in each iteration of GMRES in double the working precision, we require κ∞(A) ≤
u−1/2u−1

f , and in the case that a uniform precision is used within GMRES (a variant
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uf u ur SIR GMRES-IR SGMRES-IR
half single double 2 · 103 8 · 106 4 · 104

half double quad 2 · 103 2 · 1011 3 · 107

single double quad 2 · 107 2 · 1015 1 · 1010

Table 1: Constraints on κ∞(A) for which the relative forward and normwise back-
ward errors are guarantee to converge to the level u for a given combination of
precisions for SIR, GMRES-IR (which uses double the working precision in applying
the preconditioned matrix to a vector) and SGMRES-IR (which uses the working
precision throughout).

which we call SGMRES-IR), we require κ∞(A) ≤ u−1/3u
−2/3
f ; see [3]. If these con-

straints are met, preconditioned GMRES is guaranteed to converge to a backward
stable solution after n iterations and the iterative refinement scheme will converge
to its limiting accuracy. We note that to guarantee backward stability, all existing
analyses (e.g., [5, 6, 3]) assume that unrestarted GMRES is used within GMRES-IR.

We also note that existing analyses do not guarantee how fast GMRES will con-
verge in each refinement step, only that it will do so within n iterations. However,
if indeed n iterations are required to converge in each GMRES solve, this can make
GMRES-IR more expensive than simply computing the LU factorization in higher
precision and using SIR. Indeed, high-performance experiments show that slow GM-
RES convergence can negatively impact the achievable performance; see [12, Fig-
ure 7 (b)]. To make more precise the relative costs of each step of SIR and GMRES-
IR, we list their costs in terms of asymptotic computational complexity in Table 2.

Unfortunately, GMRES convergence speed is difficult to predict. In fact, for any
set of prescribed eigenvalues, one can construct a linear system for which GMRES
will stagnate entirely until the nth iteration [11]. The situation is better understood
at least in the case of normal matrices; see, e.g., [15]. The worst-case scenario in the
case of normal A is when eigenvalues are clustered near the origin, which can cause
complete stagnation of GMRES [15]. After the preconditioning step in GMRES-
IR, all eigenvalues of the preconditioned matrix (U−1L−1A) ideally become 1 in the
absence of finite precision error in computing LU and within GMRES. However, in
practice, since we have inexact LU factors, if A has a cluster of eigenvalues near
the origin, this imperfect preconditioner may fail to shift some of them away from
the origin, which can cause GMRES to stagnate. For instance, when random dense
matrices having geometrically distributed singular values are used in the multistage
iterative refinement algorithm devised in [19], the authors showed that for relatively
large condition numbers relative to precision uf , GMRES tends to perform n itera-
tions in each refinement step.

Figure 1 shows the eigenvalue distribution of a double-precision 100×100 random
dense matrix having geometrically distributed singular values with condition number
κ2(A) = 1012, generated via the command gallery(’randsvd’,100,1e12,3) in
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Once per IR solve
(both variants)

O(n3) in precision uf (LU fact.)

SIR step O(n2) in precision uf (tri. solves)

GMRES-IR step
(k GMRES iterations)

O(nk2) in precision u (orthog.)
O(nnz · k) in precision u or u2 (SpMV)
O(n2k) in precision u or u2 (precond.)

Once per refinement step
(both variants)

O(nnz) in precision ur (residual comp.)
O(n) in precision u (sol. update)

Table 2: Asymptotic computational complexity of operations in each refinement step
for SIR and GMRES-IR.

MATLAB. In the unpreconditioned case (left), the eigenvalues are clustered around
the origin, a known difficult case for GMRES. When double-precision LU factors
are used for preconditioning (middle), the eigenvalues of the preconditioned system
are now clustered around 1. On the other hand, using half-precision LU factors
as preconditioners (right) causes a cluster of eigenvalues to remain near the origin,
indicating that GMRES convergence will likely be slow (we note that these are
nonnormal matrices and so the theory of [15] does not apply, but our experimental
evidence indicates that this is the case).

Thus, even when low-precision LU factors can theoretically be used in GMRES-
IR, they may not be the best choice from a performance perspective. In this scenario,
we are left with two options: either increase the precision in which the LU factors
are computed, or seek to improve the convergence behavior of GMRES through
other means. It is the latter approach that we take in this work. In particular, we
investigate the use of Krylov subspace recycling.

In Section 2, we give a background on the use of recycling in Krylov subspace
methods and describe our approach. Extensive numerical experiments that demon-
strate the potential benefit of recycling within GMRES-based iterative refinement
are presented in Section 3. We outline open problems in Section 4.

2. Iterative refinement with Krylov subspace recycling

One way to speed up the convergence of GMRES is using recycling [20, 21]. The
idea of recycling is that if we have a sequence of linear systems (Ax1 = b1, Ax2 =
b2, . . .) to solve involving the same (or a similar) coefficient matrix A, then we can
reuse the Krylov subspace information generated in solving Ax1 = b1 to speed up
converge of the method in solving Ax2 = b2, etc. This is exactly the situation we
have in GMRES-IR: within the iterative refinement loop, we call GMRES on the
matrix A many times, and only the right-hand side changes between refinement
steps. Thus we can use Krylov subspace recycling within GMRES across iterative
refinement steps, and theoretically the convergence of GMRES should improve as
the refinement proceeds.
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Figure 1: Eigenvalue distribution of a double-precision random dense matrix with
κ2(A) = 1012 without preconditioner (left), with a double-precision LU precondi-
tioner (middle), and with a half-precision LU preconditioner (right).

GMRES-DR [17] is a truncated and restarted solver developed for solving sin-
gle nonsymmetric linear systems. The method deflates small eigenvalues for the
new subspace to improve the convergence of restarted GMRES. Another truncated
solver used for recycling is called GCROT [8]. The method recycles a subspace that
minimizes the loss of orthogonality with Krylov subspace from the previous system.

By far the most popular Krylov subspace method implementing recycling is
GCRO-DR [20]. GCRO-DR can be seen as a combination of GMRES-DR and a mod-
ified GCROT. In GCRO-DR, the residual minimization and orthogonalization are
performed over the recycled subspace, leading to an adaptive truncated recycling
method. GCRO-DR uses the deflated restarting idea in GMRES-DR in the same
manner as GCROT. Let m denote the maximum size of the Krylov subspace and
let k denote the number of vectors to recycle. In one cycle of GCRO-DR(m, k), first,
using the k harmonic Ritz vectors corresponding to the k smallest harmonic Ritz
values, the solution space is constructed. After finding the optimal solution over
the solution space and computing the residual, GCRO-DR constructs the Arnoldi
relation by generating a Krylov subspace of dimension m− k + 1. After completing
the Arnoldi process, the algorithm solves a minimization problem at the end of each
cycle, which reduces to an (m + 1) × m least-squares problem. After solving the
least-squares problem and computing the residual, a generalized eigenvalue problem
is solved, and harmonic Ritz vectors are recovered. Since harmonic Ritz vectors
are constructed differently than in GMRES-DR, GCRO-DR is suitable for solving
individual linear systems and sequences of them. See [20] for further details.

The use of recycling may also be favorable from a performance perspective.
GCRO-DR performs only m − k Arnoldi steps implying that it performs m − k
matrix-vector multiplications per cycle, whereas GMRES(m) performs m matrix-
vector multiplications. It is also mentioned in [20] that since GCRO-DR stores Uk

and Ck, it performs 2kn(1 + k) fewer operations during the Arnoldi process. On the
other hand, since we are using k eigenvectors, GCRO-DR(m, k) requires storing k
more vectors than GMRES(m).
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In an effort to reduce the overall computational cost of the GMRES solves within
GMRES-IR, we develop a recycled GMRES-based iterative refinement algorithm,
called RGMRES-IR. In line 5 of Algorithm 1, RGMRES-IR uses preconditioned
GCRO-DR(m, k) instead of preconditioned GMRES to solve the correction equation.
As in GMRES-IR, RGMRES-IR will use three precisions: uf , u, and ur. Again
we note that we assume ur ≤ u ≤ uf . Using different precision settings results
in different constraints on the condition number to guarantee convergence of the
forward and backward errors. Although our experiments here will use three different
precisions, two precisions (only computing residuals in higher precision) or fixed
(uniform) precision can also be used in the RGMRES-IR algorithm.

3. Numerical experiments

In this section, we compare GMRES-IR and RGMRES-IR for solving Ax = b.
We adapted MATLAB implementations of the GMRES-IR method from [6], and the
GCRO-DR method from [20]. To simulate half-precision, we use the chop library
and associated functions from [13], available at https://github.com/higham/chop
and https://github.com/SrikaraPranesh/LowPrecision Simulation. For sin-
gle and double precision, we use the MATLAB built-in data types and to simu-
late quadruple precision we use the Advanpix multiprecision computing toolbox,
see [2]. We restrict ourselves to IEEE precisions, although we note that one could
also use formats like bfloat16 [14]. The experiments are performed on a com-
puter with Intel Core i7-9750H having 12 CPUs and 16 GB RAM with OS system
Ubuntu 20.04.1. Our RGMRES-IR algorithm and associated functions are available
at https://github.com/edoktay/rgmresir, which includes scripts for generating
the data and plots in this work.

The GMRES convergence tolerance τ dictates the stopping criterion for the inner
GMRES iterations. GMRES is considered converged if the relative (preconditioned)
residual norm drops below τ . In tests here with single working precision, we use
τ = 10−4. For double working precision, we use τ = 10−8. Note that for the outer
iterative refinement scheme, we explicitly compute the true solution x and stop the
iterations if the forward and backward errors are less than u. For practical stopping
criteria relevant to GMRES-IR schemes, see [19]. To ensure that we fully exhibit
the behavior of the methods, we set the maximum number of refinement steps to
imax = 10000, which is large enough to allow all approaches that eventually converge
sufficient time to do so.

The results are compared in two different metrics: the number of GMRES it-
erations per refinement step and the total number of GMRES iterations. For sim-
plicity, b is chosen to be the vector of ones for all matrices, and the precisions are
chosen such that u ≤ u2

f , and ur ≤ u2. We compare GMRES-IR and RGMRES-IR
in the setting where precision u2 is used for preconditioning, except for the experi-
ments in Section 3.3.1 where we investigate the use of uniform precision within the
solver.
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For a fair comparison between GMRES-IR and RGMRES-IR, GMRES-IR is used
with restart value m, which is the maximum size of the subspace used in RGMRES-
IR. Since the first refinement step of RGMRES-IR does not have a recycled subspace,
it is the same as the first step of GMRES-IR. We thus expect a decrease in the number
of GMRES iterations per refinement step starting from the second refinement step.
For RGMRES-IR, the optimal number k < m of harmonic Ritz vectors is chosen for
each group of matrices with the desired precision settings after several experiments
on various (m, k) scenarios. The optimum k differs for each matrix. The least total
number of GMRES iterations is obtained for k = (# of GMRES iterations in the first
refinement step)−1 since, in this case, we are recycling the whole generated subspace,
which is expensive. Thus one should choose a k value as small as possible to reduce
computational cost while benefiting from recycling. Figure 2 shows the change in
the total GMRES iterations according to the given k values for two matrices. From
the plots, one can easily find the knee, i.e., find the smallest k value that gives
a reasonably small number of GMRES iterations.
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Figure 2: Total GMRES iterations for various k for a randsvd matrix with
κ2(A) = 1013 (left) and a prolate matrix with α = 0.434 (right) for (uf , u, ur) =
(single, double, quad).

In the tables we will present, the first number shows the total number of GM-
RES iterations. The numbers in the parentheses indicate the number of GMRES
iterations performed in each refinement step. For instance, 5(2,3) implies that there
are 2 refinement steps, the first of which performs 2 GMRES iterations and the sec-
ond of which performs 3, giving a total of 5 GMRES iterations. We note that we
use the GMRES iteration count as a proxy for performance, although this is not
a perfect measure; for recent results on mixed precision GMRES-IR with restarting
see [16]. We also note that additional numerical experiments for RGMRES-IR can
be found in the associated technical report [18].

3.1. Prolate matrices

We first test our algorithm on prolate (symmetric, ill-conditioned Toeplitz ma-
trices whose eigenvalues are distinct, lie in the interval (0, 1), and tend to cluster
around 0 and 1) matrices [22] of dimension n = 100, generated using the MATLAB
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command gallery(’prolate’,n,alpha), where alpha is the array of the desired
parameters α ={0.475, 0.47, 0.467, 0.455, 0.45, 0.4468, 0.44, 0.434}. When α < 0.5,
it becomes difficult for GMRES-IR to solve the system since the eigenvalues skew
more towards zero. Table 3 shows the number of GMRES iterations performed by
GMRES-IR and RGMRES-IR for the setting (uf , u, ur) = (half, single, double).

From Table 3, we can see that GMRES-IR diverges for α < 0.45 with and without
recycling. However, when α = 0.45, we see that RGMRES-IR diverges although
GMRES-IR converges. This is because of the multiple periods of stagnation in
the second refinement step due to recycling. GCRO-DR cannot converge in the
first 16 − 5 = 11 iterations in the second step, causing an infinite restart which
results in divergence. However, for cases where both GMRES-IR and RGMRES-IR
converge, RGMRES-IR always requires fewer GMRES iterations. For α = 0.455,
GMRES restarts in the second refinement step of GMRES-IR, while recycling allows
RGMRES-IR to converges without restarting, decreasing the cost.

α κ∞(A) κ2(A) GMRES-IR (16) RGMRES-IR (16,5)
0.475 1 · 106 4 · 105 12 (6,6) 8 (6,2)
0.47 3 · 107 8 · 106 16 (8,8) 10 (8,2)
0.467 2 · 108 5 · 107 19 (9,10) 11 (9,2)
0.455 3 · 1011 8 · 1010 50 (15,25,10) 19 (15,4)
0.45 7 · 1012 2 · 1012 89 (14,43,32) -
0.4468 5 · 1013 1 · 1013 - -
0.44 3 · 1015 9 · 1014 - -
0.434 3 · 1016 9 · 1015 - -

Table 3: Number of GMRES-IR and RGMRES-IR refinement steps/GMRES itera-
tions for prolate matrices with various α values, using precisions (uf , u, ur) = (half,
single, double) and (m, k) = (16,5).

3.2. SuiteSparse matrices

We now test our algorithm on three real matrices taken from the SuiteSparse
Collection [7]. Table 4 compares the performance of GMRES-IR and RGMRES-
IR for precisions (uf , u, ur) = (half, double, quad). It is seen that RGMRES-IR
successfully reduces the total number of GMRES iterations in all cases.

3.3. Random dense matrices

Finally, we test our algorithm on random dense matrices of dimension n = 100
having geometrically distributed singular values. We generated the matrices using
the MATLAB command gallery(’randsvd’,n,kappa(i),3), where kappa is the
array of the desired 2-norm condition numbers κ2(A) ={104, 105, 106, 107, 108, 109,
1010, 1011, 1012, 1013}, and mode 3 corresponds to the matrix having geometrically
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Matrix n nnz κ∞(A) GMRES-IR (40) RGMRES-IR(40,10)
orsirr 1 1030 6858 1 · 105 22 (11,11) 20 (11,9)
comsol 1500 97645 3 · 106 52 (25,27) 34 (25,9)
circuit204 1020 5883 9 · 109 59 (18,20,21) 47 (18,14,15)

Table 4: Number of GMRES-IR and RGMRES-IR refinement steps/GMRES itera-
tions for real matrices, using precisions (uf , u, ur) = (half, double, quad) and (m, k)
= (40,10).

distributed singular values. For reproducibility, we use the MATLAB command
rng(1) each time we run the algorithm. We compare methods using precisions
(uf , u, ur) = (single, double, quad) and (uf , u, ur) = (half, double, quad). As shown
in Figure 1, these matrices have eigenvalues clustered around the origin, which can
be a difficult case for GMRES convergence. This class of problems thus represents
a good use case for the RGMRES-IR algorithm.

3.3.1. SGMRES-IR versus RSGMRES-IR

In practice, implementations often use a uniform precision within GMRES (i.e.,
applying the preconditioned matrix to a vector in precision u rather than u2). This
is beneficial from a performance perspective (in particular if precision u2 must be
implemented in software). The cost is that the constraint on condition numbers for
which the refinement scheme is guaranteed to converge becomes tighter. To illustrate
the benefit of recycling in this scenario, we first compare what we call SGMRES-IR
(GMRES-IR but with a uniform precision within GMRES) to the recycled version,
RSGMRES-IR. For a fair comparison, restarted SGMRES-IR (SGMRES-IR(m)) is
compared with recycled SGMRES-IR (RSGMRES-IR(m, k)).

Table 5 shows the number of GMRES iterations performed by SGMRES-IR and
RSGMRES-IR in the (uf , u, ur) = (single, double, quad) setting. We observe that
recycling reduces the number of GMRES iterations in this case as well. The reason
why SGMRES-IR does not converge for κ2(A) ≥ 1014 is that in the first refinement
step, restarted SGMRES does not converge (restarting an infinite number of times).
For RSGMRES-IR, in the first GCRO-DR call, recycling after the first restart cycle
helps, allowing GCRO-DR to converge. We note that this is another benefit of the
recycling approach, as it can improve the reliability of restarted GMRES, which is
almost always used in practice.

3.3.2. GMRES-IR versus RGMRES-IR

We now return to our usual setting and compare GMRES-IR and RGMRES-IR
for random dense matrices with condition numbers κ2(A) = {104, 105, 106, 107,
108, 109, 1010, 1011, 1012, 1013, 1014, 1014}. Results using precisions (uf , u, ur)
= (half, double, quad) and two different choices of (m, k) are displayed in Ta-
ble 6.

157



κ∞(A) κ2(A) SGMRES-IR (80) RSGMRES-IR (80,18)
6 · 109 109 64 (19,23,22) 34 (19,8,7)
6 · 1010 1010 120 (39,40,41) 65 (39,13,13)
6 · 1011 1011 160 (52,54,54) 94 (52,21,21)
6 · 1012 1012 196 (65,65,66) 163 (65,32,32,34)
5 · 1013 1013 301 (75,75,75,76) 199 (75,41,41,42)
5 · 1014 1014 - 493 (131,51,51,52,52,52,52,52)
5 · 1015 1015 - 2093*

Table 5: Number of SGMRES-IR and RSGMRES-IR refinement steps/GMRES it-
erations for precisions (uf , u, ur) = (single, double, quad) and (m, k) = (80,18). For
κ2(A) = 1015, RSGMRES-IR required 2093 total GMRES iterations over 37 refine-
ment steps.

κ∞(A) κ2(A) GMRES-IR (100) RGMRES-IR (100,30) GMRES-IR (90) RGMRES-IR (90,40)
9 · 104 104 33 (16,17) 33 (16,17) 33 (16,17) 33 (16,17)
8 · 105 105 85 (41,44) 71 (41,15,15) 85 (41,44) 50 (41,9)
7 · 106 106 134 (66,68) 85 (66,19) 134 (66,68) 81 (66,15)
7 · 107 107 167 (83,84) 113 (83,30) 167 (83,84) 100 (83,17)
7 · 108 108 193 (96,97) 138 (96,42) - 149 (119,30)
6 · 109 109 200 (100,100) 151 (100,51) - 179 (134,45)
6 · 1010 1010 200 (100,100) 158 (100,58) - 470 (388,41,41)
6 · 1011 1011 200 (100,100) 165 (100,65) - -
6 · 1012 1012 200 (100,100) 170 (100,70) - -
5 · 1013 1013 3954* 241 (171,70) - -

Table 6: Number of GMRES-IR and RGMRES-IR refinement steps/GMRES iter-
ations for random dense matrices having geometrically distributed singular values
(mode 3) with various condition numbers, using precisions (uf , u, ur) = (half, dou-
ble, quad) and settings (m, k) = (100,30) and (m, k)=(90,40). For m = 100 and 1013,
GMRES-IR required 3954 total GMRES iterations over 45 refinement steps.

For both choices of (m, k), when κ∞(A) > 105, recycling reduces the total number
of GMRES iterations. This class of matrices with a low-precision LU preconditioner
is a known difficult case for GMRES, and thus we can clearly see the benefits of
recycling. We see the most significant improvement for the matrix with κ2(A) = 1013,
in which RGMRES-IR requires over 16× fewer GMRES iterations than GMRES-IR
when m = 100. We note that GMRES-IR is only guaranteed to converge up to
κ2(A) < 1012 for this combination of precisions; for detailed information, see [6].

The reason that RGMRES-IR outperforms GMRES-IR for m = 100 and
κ2(A) = 1013 is different than in the previous cases (caused by stagnation due to
restarting), and is almost accidental in this case. We investigate this more closely
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in Figure 3. In the left plot, we see the convergence trajectory of GMRES(100).
In the first restart cycle, the residual decreases from 106 to 103 after 100 GMRES
iterations. GMRES restarts and performs two more iterations, at which point it
converges to a relative residual of 10−8 (absolute residual of around 10−2). Hence,
the first refinement step of GMRES-IR does 100 + 2 = 102 iterations. The right plot
shows the residual trajectory for GCRO-DR. The first restart cycle is the same as in
GMRES; however, once the method restarts, the residual stagnates just above the
level required to declare convergence. After m− k = 70 more iterations, GCRO-DR
restarts again, and this time, the residual drops significantly lower. So while GCRO-
DR requires more iterations (171) to converge to the specified tolerance, when it
does converge, it converges to a solution with a smaller residual. This phenomenon
can in turn reduce the total number of refinement steps required. It is possible
that we could reduce the overall number of GMRES iterations within GMRES-IR
(and also RGMRES-IR) by making the GMRES convergence tolerance τ smaller.
We did not experiment with changing the GMRES tolerance within GMRES-IR or
RGMRES-IR, but this trade-off would be interesting to explore in the future.
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Figure 3: Residual trajectory of GMRES (left) and GCRO-DR (right), used within
GMRES-IR and RGMRES-IR, respectively, for a randsvd matrix with κ2(A) = 1013

and precisions (uf , u, ur) = (half, double, quad).

We stress that the convergence guarantees for GMRES-IR for various precisions
stated in [5, 6, 3] hold only for the case of unrestarted GMRES, i.e., m = n. When
m < n, there is no guarantee that GMRES converges to a backward stable solution
and thus no guarantee that GMRES-IR will converge. Choosing a restart parameter
m that allows for convergence is a difficult problem, and a full theory regarding the
behavior of restarted GMRES is lacking. The behavior of restarted GMRES is often
unintuitive; whereas one would think that a larger restart parameter is likely to be
better than a smaller one as it is closer to unrestarted GMRES, this is not always
the case. In [10], the author gives examples where a larger restart parameter causes
complete stagnation, whereas a smaller one results in fast convergence.

In Table 6 for the case m = 90, we can see that both methods converge for
κ∞(A) < 108. After this point, GMRES-IR does not converge, whereas RGMRES-
IR does. This serves as an example where the convergence guarantees given in [5, 6]
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do not hold for GMRES-IR with restarted GMRES; for unrestarted GMRES, conver-
gence is guaranteed up to κ∞(A) ≤ 1012 for this precision setting. Here, GMRES-IR
does not converge because of the stagnation caused by restarting in the first refine-
ment step. Aided by the recycling between restart cycles, RGMRES-IR does converge
up to κ2(A) = 1010, although the large number of GMRES iterations required in the
first refinement step makes this approach impractical.

4. Conclusion and future work

In this work, we have incorporated Krylov subspace recycling into mixed precision
GMRES-based iterative refinement in order to reduce the total number of GMRES
iterations required. We call our algorithm RGMRES-IR. Instead of preconditioned
GMRES, RGMRES-IR uses a preconditioned GCRO-DR algorithm to solve for the
approximate solution update in each refinement step. Our numerical experiments
on random dense matrices, prolate matrices, and matrices from SuiteSparse [7] show
the potential benefit of the recycling approach. Even in cases where the number of
GMRES iterations does not preclude the use of GMRES-based iterative refinement,
recycling can have a benefit. In particular, it can improve the reliability of restarted
GMRES, which is used in most practical scenarios.

One major caveat for GMRES-based iterative refinement schemes is that the
analysis and convergence criteria discussed in the literature all rely on the use of
unrestarted GMRES. When restarted GMRES is used, we cannot give such con-
crete guarantees, as restarted GMRES may not converge even in infinite preci-
sion. A greater understanding of the theoretical behavior of restarted GMRES (and
GCRO-DR) both in infinite and finite precision would be of great interest. Another
potential future direction is the exploration of the potential for the use of mixed
precision within GCRO-DR. We expect that it may be possible to use low precision
within GCRO-DR, for example, in the computation of harmonic Ritz pairs.

Acknowledgements

We acknowledge funding from Charles University project PRIMUS/19/SCI/11,
Charles University Research Program No. UNCE/SCI/023, and the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the U.S. Department of En-
ergy Office of Science and the National Nuclear Security Administration.

References

[1] Abdelfattah, A. et al.: A survey of numerical linear algebra methods utilizing
mixed-precision arithmetic. The International Journal of High Performance
Computing Applications 35 (2021), 344–369.

[2] Advanpix LLC. Multiprecision Computing Toolbox for MATLAB. URL http:

//www.advanpix.com/.

160

http://www.advanpix.com/
http://www.advanpix.com/


[3] Amestoy, P. et al.: Five-precision GMRES-based iterative refinement. MIMS
EPrint 2021.5, Manchester Institute for Mathematical Sciences, The Univer-
sity of Manchester, Manchester, UK, 2021. URL http://eprints.maths.

manchester.ac.uk/2807/.

[4] Baboulin, M. et al.: Accelerating scientific computations with mixed precision
algorithms. Computer Physics Communications 180 (2009), 2526–2533.

[5] Carson, E. and Higham, N.J.: A new analysis of iterative refinement and its
application to accurate solution of ill-conditioned sparse linear systems. SIAM
Journal on Scientific Computing 39 (2017), A2834–A2856.

[6] Carson, E. and Higham, N.J.: Accelerating the solution of linear systems by
iterative refinement in three precisions. SIAM Journal on Scientific Computing
40 (2018), A817–A847.

[7] Davis, T.A. and Hu, Y.: The University of Florida Sparse Matrix Collection.
ACM Transactions on Mathematical Software 38 (2011).

[8] De Sturler, E.: Truncation strategies for optimal Krylov subspace methods.
SIAM Journal on Numerical Analysis 36 (1999), 864–889.

[9] Demmel, J. et al.: Error bounds from extra-precise iterative refinement. ACM
Trans. Math. Softw. 32 (2006), 325–351.

[10] Embree, M.: The tortoise and the hare restart GMRES. SIAM Review 45
(2003), 259–266.

[11] Greenbaum, A., Pták, V., and Strakoš, Z.: Any nonincreasing convergence curve
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Abstract: Some dynamical systems are characterized by more than one time-
scale, e.g. two well separated time-scales are typical for quasiperiodic systems.
The aim of this paper is to show how singular perturbation methods based on
the slow-fast decomposition can serve for an enhanced parameter estimation
when the slowly changing features are rigorously treated. Although the ulti-
mate goal is to reduce the standard error for the estimated parameters, here we
test two methods for numerical approximations of the solution of associated
forward problem: (i) the multiple time-scales method, and (ii) the method
of averaging. On a case study, being an under-damped harmonic oscillator
containing two state variables and two parameters, the method of averaging
gives well (theoretically predicted) results, while the use of multiple time-scales
method is not suitable for our purposes.

Keywords: dynamical system, singular perturbation, averaging, parameter
estimation, slow-fast decomposition, damped oscillations
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1. Introduction

In this study, we present a development and testing of suitable methods for the
numerical simulation of the forward problem associated with the inverse problem of
model parameter estimation. The key feature of a process under study is that two
well separated time-scales are present, which is typical for quasiperiodic systems,
i.e. there is a periodic behavior in a fast time-scale and some other phenomenon,
evolving in much slower time-scale, to be identified.

Although the ultimate goal is to quantify and reduce the standard error (confi-
dence interval) for the model parameter estimates, an accurate and fast numerical
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approximation of the forward problem associated with the inverse problem is wanted.
Here, we test two methods: (i) the multiple time-scales method, and (ii) the method
of averaging. In summary, we highlight how singular perturbation methods serve
the corresponding problem of model parameter estimation. On a (linear) model of
an under-damped harmonic oscillator containing two state variables and two param-
eters, we demonstrate both the known pitfalls of the multiple time-scales method
and the feasibility of the averaging method (the first order averaging) employed for
a numerical simulation of the associated forward problem.

2. Preliminaries

2.1. State variables, model parameters, and governing equations

As follows, we present an ODE system in general (linearized) form describing
the first order dynamics of a process depending on model parameters p1, . . . , pm and
evolving in continuous time. A general form of a linear first order ODE system
describing the dynamics of state variable vector x ∈ Rn is

dx(t; p)

dt
= A(p)x(t; p) (1)

with the square matrix A(p) of order n. Vector p ∈ Rm contains all model parameters
defining the system under study. Finally, there are the initial conditions x0 = x(t0; p)
which can be taken as system inputs.

Although our motivation for studying first order dynamical systems (1) dwells
on a prospect to study inverse problems of parameter estimation arising from phar-
macokinetics models, here, as a case study, we shall consider the governing dynamic
equations for a weakly damped linear (harmonic) oscillator. In branch of mechanics,
a mechanical oscillator under the influence of a linear restoring force and friction is
described (using the Newton second law) by the ODE

m ÿ = −k y − b ẏ +mg, (2)

where y is the vertical position of the center of mass (the positive direction is upside
down), m > 0 is the mass, k > 0 is the spring force constant, and b > 0 measures the
strength of the damping. Setting the origin of y-axis at the equilibrium (i.e. at the
position y = 0 the force of gravity is acting on the mass equalized by an adequate
spring force), the governing equation of the system becomes

ÿ + 2δ ẏ + ω 2
0 y = 0, (3)

where δ ≡ b
2m

and ω0 ≡
√
k/m are a usual damping constant and an undamped

oscillation frequency, respectively [cf., Equation (8) for δ = 0 below].

We shall refer to the preceding equation (3) as the damped harmonic oscillator
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equation. Let the initial conditions be1

y(0) = 1, ẏ(0) = 0. (4)

Further, inspired by [6], let us introduce the following transformation of state
variables

x1 = y, x2 =
ẏ

ω0

, (5)

then the single ODE of the second order (3) can be described in the form of (1),
where the state variables vector is

x(t) =

(
x1(t)
x2(t)

)
,

the corresponding form of matrix A is

A(p) =

(
0 ω0

−ω0 −2δ

)
= ω0

(
0 1
−1 −2 δ

ω0

)
, (6)

and the initial conditions are

x(0) =

(
x1(0)
x2(0)

)
=

(
1
0

)
. (7)

2.2. Exact solution of the system (3)-(4)

Assuming that δ < ω0 and setting ω :=
√
ω0

2 − δ2, the exact solution of system
(3) with initial conditions (4) is given by

yex(t) = e−δt
(

cosωt+
δ

ω
sinωt

)
. (8)

Remark 2.1. If we define a scalar dimensionless quantity ε := δ
ω0
� 1, then ω =

ω0

√
1− ε2. Furthermore, employing a usual scaling of time t, i.e. tscaled := ω0 t,

then the exact solution (8) has the form

yex(tscaled) = e−ε tscaled
(

cos
√

1− ε2 tscaled +
ε√

1− ε2
sin
√

1− ε2 tscaled

)
. (9)

As follows, the above single parameter form (9) is used and the scaled time is
(in seek of simplicity) expressed as t, which in fact is fulfilled for the value ω0 = 1.
Moreover, given the transformation of state variables (5), it holds x2 = dx1

dtscaled
.

Remark 2.2. Let us underline that the expression (9) is employed in Section 4.3
for the quantification of errors corresponding to different numerical approximation
methods.

The numerical values of two (only) model parameters used in equations (3)–(9)
within some other related quantities are summarized in Table 1.

1This is done without loss of generality because the y coordinate can be scaled or normalized
by the maximum value of y(t), i.e. y(0) value. Another usual setting of initial conditions for
Equation (3) is y(0) = 0, ẏ(0) = 1.
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Parameter Formula Value Meaning

ω0

√
k/m 1.0 [s−1] undamped oscillation frequency

δ b
2m

10−3 [s−1] damping constant

ε δ
ω0

10−3 [−] dimensionless damping constant

Table 1: Description and values of model parameters used in (3)–(9).

3. Perturbation theory and the averaging principle

Some dynamical systems can be represented by differential equations that are
a small perturbation of an integrable problem.2 Therefore, methods that allow to ap-
proximate the solutions of a perturbed problem, like ẋ = f(t, x; ε), where 0 < ε� 1,
starting from the solutions of the unperturbed one (for ε = 0), are forming the
perturbation theory, see e.g. [1, 2]. Instead of providing a detailed theoretical de-
scription of the singular perturbation (SP) techniques and their variants, for a class
of systems defined by (1) we mention only two of them: (i) the method of multiple
scales (MMS),3 and (ii) the first order averaging.

3.1. Failure of the naive implementation of the MMS technique

Consider a first order expansion of a solution vector x, i.e. x(t, ε) = x(0)(t) +
εx(1)(t) +O(ε2). Then (1) reads

d
(
x(0)(t) + εx(1)(t)

)
dt

= A(ε)
(
x(0)(t) + εx(1)(t)

)
.

For our weakly damped oscillator (1), with matrix A as (6), and after applying
the scaling for both state variables and time, we have

dx(t)

dt
=

(
0 1
−1 0

)
x(t) +

(
0 0
0 −2ε

)
x(t) (10)

with initial conditions (4), i.e.

x(0)(0) =

(
1
0

)
, x(1)(0) =

(
0
0

)
.

Then we find for the leading order problem that

dx(0)(t)

dt
=

(
0 1
−1 0

)
x(0)(t) (11)

2We say that a system of ODEs is integrable if its solutions can be expressed by analytic formulas
up to inversions (by the implicit function theorem) or quadratures; we call the system non-integrable
if this is not possible.

3Because of the inconvenience of method of multiple scales for numerical solution of a class of
pharmacokinetic models, the setting of solvability conditions in frame of MMS is omitted here, for
more details see Remark 3.2.
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with a solution

x(0)(t) =

(
cos t
− sin t

)
.

At next order (for ε1), we find that

dx(1)(t)

dt
=

(
0 1
−1 0

)
x(1)(t) +

(
0 0
0 −2

)
x(0)(t), (12)

which is in fact the ODE for a resonantly forced oscillator, and the solution for the
first component is

x
(1)
1 (t) = sin t− t cos t.

Therefore, a two-term (first order) approximate solution for the component x1 is

x1(t) = x
(0)
1 (t) + ε x

(1)
1 (t) = cos t+ ε sin t− ε t cos t = (1− ε t) cos t+ ε sin t. (13)

Remark 3.1. The above example clearly shows the failure when the naive implemen-
tation of the regular expansion is employed. On the result (13) it can be observed
that the weakly damping system undergoes small changes of the amplitude of the os-
cillation (as (1− ε t)) which cannot be longer negligible on a time scale ε−1 ∼ 1 000,
i.e. when the so-called secular terms invalidate the expansion, see Fig. 1.

0 500 1000 1500 2000 2500

time

-1.5

-1

-0.5

0

0.5

1

1.5

x(
t)

Exact solution
Naive MMS approximation

Figure 1: Comparison of the exact solution (9) (solid black curve) with the naive
MMS approximation (13) (dotted curve).

Remark 3.2. The correct employement of the MMS techniques resides in the use of
what are known as solvability conditions in the formal derivation. It can be seen as
a trick to avoid secular terms, and actually it is. Here, we reject this method because
it poses big problem for the numerical implementation of the method.
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Remark 3.3. There is some similarity of MMS to the Poincaré-Lindstedt method
which provides a way to construct asymptotic approximations of periodic solutions.
Nevertheless, the Poincaré-Lindstedt method cannot be used to obtain solutions that
evolve aperiodically on a slow time-scale. Thus, the method of multiple scales, and
mainly its WKB variant (WKB method requires the sate variable x to be 2π-periodic
function of the “fast” time variable θ, see e.g. [2] and references within), is a more
general approach.

3.2. Averaging principle

The averaging principle consists in solving averaged equations, obtained by an
integral average of the original equations (which can be put into a periodic standard
form) over some angular variables; then we consider the solutions of the averaged
equations as representative of the solutions of the original equations for a long time
span (of the order 1/ε). A review of the classical results on averaging methods
in perturbation theory can be found in [2, 6]. Further, in sake of completeness, we
announce (without proofs) two theorems dealing with approximation error estimation
(published in [4]) and we present the approximate solution to (3)–(4) using the first
order averaging (see Section 4.1).

Theorem 3.4. Consider a system of ODEs for x(t) ∈ Rn which can be written in
the standard form

ẋ = εf(x, t; ε). (14)

Here, f : Rn × R× R→ Rn is a smooth function, 2π-periodic in “fast” variable t:

f(x, t+ 2π, ε) = f(x, t, ε).

For R > 0 let BR(x0) = {x(t) ∈ Rn; |x−x0| < R} and M = supx∈BR(x0), t∈T |f(x, t)|.
Then there is a unique solution of the IVP,

x : (−T/ε, T/ε)→ BR(x0) ⊂ Rn

that exists for |t| < T/ε, where T = R
M
.

Theorem 3.5 (Krylov-Bogoliubov-Mitropolski). With the same notation as in the
previous theorem: There exists a unique solution

x̄ : (−T/ε, T/ε)→ BR(x0) ⊂ Rn

of the averaged equation
˙̄x = εf̄(x̄), x̄(0) = x0, (15)

where f̄(x) = 1
2π

∫
T
f(x, t)dt. Moreover, there exist constants ε0 > 0 and C > 0 such

that for all 0 ≤ ε ≤ ε0

|x(t)− x̄(t)| ≤ C ε for |t| ≤ T/ε. (16)
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4. Numerical example

On the ODE system (3)–(4) we now perform some numerical experiments. As
mentioned, the MMS method produces naive numerical results, and thus we use
the averaging principle and compare it with the backward Euler method. First, we
introduce approximate solutions for both approaches.

4.1. Approximate solution to (3)–(4) using the first order averaging

Consider the ODE system (3)–(4) in the following form:

ÿ + y = −2ε ẏ, y(0) = 1, ẏ(0) = 0.

Using the transformation

y = r sin(t− φ), ẏ = r cos(t− φ), (17)

the new variables r, φ satisfy the system

ṙ = ε cos(t− φ)(−2r cos(t− φ)) ≡ εfr(t),

φ̇ = ε1
r

sin(t− φ)(−2r cos(t− φ)) ≡ εfφ(t).

Applying the averaging principle to the above equations leads to solving the system

˙̄r = εf̄r,
˙̄φ = εf̄φ, (18)

where

f̄r =
1

2π

∫ 2π

0

fr(t) dt, f̄φ =
1

2π

∫ 2π

0

fφ(t) dt. (19)

Remark 4.1. Clearly it holds f̄r = −r and f̄φ = 0 but unlike our simple case
study, the integrals of functions fr, fφ in (19) cannot be usually computed easily.
For this purpose we compute it numerically using the trapezoidal rule at points
0 = t0, t1, . . . , tn = 2π.

Let Fr, Fφ be the values of integrals of functions fr, fφ computed numerically, i.e.

Fr ≈
∫ 2π

0

cos2(t) dt, Fφ ≈
∫ 2π

0

sin(t) cos(t) dt.

Then

f̄r = − r
π
Fr, f̄φ = − 1

π
Fφ

and substituting into (18), the system of equations which approximates (3)–(4) is

˙̄r = −εFr
π
r̄, ˙̄φ = −εFφ

π
.
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The solution is

r̄ = Cr exp

(
−εFr

π
t

)
, φ̄ = −εFφ

π
t+ Cφ,

where Cr and Cφ are some constants. Substituting into (17), the approximate aver-
aging solution is then

y(t) = r̄ sin(t− φ̄) = Cr exp

(
−εFr

π
t

)
sin

(
t+ ε

Fφ
π
t− Cφ

)
,

ẏ(t) = r̄ cos(t− φ̄) = Cr exp

(
−εFr

π
t

)
cos

(
t+ ε

Fφ
π
t− Cφ

)
.

The constants Cr and Cφ will be obtained from initial conditions:

y(0) = Cr sin(−Cφ) = 1, ẏ(0) = Cr cos(−Cφ) = 0,

which implies

cos(−Cφ) = 0 ⇒ Cφ = 3
2
π and Cr = 1.

Finally, the approximate solution using the first order averaging has the form

yav(t) = exp

(
−εFr

π
t

)
sin

(
t+ ε

Fφ
π
t− 3

2
π

)
= exp

(
−εFr

π
t

)
cos

(
(1 + ε

Fφ
π

)
t). (20)

4.2. Approximate solution to (3)–(4) using the backward Euler method

Transformation

x1 = y, x2 = ẏ

leads to a system

ẋ = Ax, x =

(
x1

x2

)
, A =

(
0 1
−1 −2ε

)
,

cf. (6), with initial conditions (7). The implicit backward Euler method leads to
solving a linear system

(I −∆tA)x(t+ ∆t) = x(t).

The numerical solution to (3)-(4) is the first component, i.e.

ybe(tj) = x1(tj), j = 0, . . . ,m, tj = j∆t, tm = T. (21)
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Figure 2: Errors of averaging solution and the backward Euler method from the
exact solution, t ∈ [0, 10 000].
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Figure 3: Zoom of errors. Left: t ∈ [0, 100], Right: t ∈ [9 900, 10 000].

4.3. Comparison of solution errors

Consider problem (3)–(4) and take the exact solution (9), the approximate aver-
aging solution (20), and the solution obtained using the backward Euler method (21).
Define the errors of computed solutions from the exact solution as follows:

errorav(tj) = yex(tj)− yav(tj), errorbe(tj) = yex(tj)− ybe(tj), (22)

where tj = j∆t, j = 0, . . . ,m, tm = T (final time). For our numerical computations
we consider the values

ε = 1.0E-3 (see Table 1), ∆t = 1.0E-5, T = 10 000.

Figure 2 shows the errors (22) of averaging solution and the backward Euler method
from the exact solution for t ∈ [0, 10 000]. Figures 3 show zooms. On the left there
are errors for the initial time interval t ∈ [0, 100], while on the right there are errors
for the final time interval t ∈ [9 900, 10 000].
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The results show that the solution obtained using the averaging principle is really
of order C ε as stated in Theorem 3.5 (here for ε = 10−3 we have C ≈ 1) and the error
envelope is decreasing from the beginning. On the other hand, the error envelope of
the Euler method grows at the beginning until the time t reaches the value 1/ε, i.e.
t ≈ 1 000. This maximum value is even for a relatively small step ∆t = 10−5 twice
the maximum value of averaging envelope (C ≈ 2). For t > 1/ε the error envelope
of the Euler method finally tends to zero. Thus, the averaging principle outperforms
the Euler method.

5. Conclusion

We showed the behavior of the Method of Multiple (time)Scales (MMS) and
mainly the Averaging method to approximate the solutions of perturbation prob-
lems. The Naı̈ve implementation of MMS generates wrong results due to presence
of secular terms which cannot be avoided when using a numerical approach. On the
other hand, the averaging method gives satisfactory results, the error is of order C ε
(as predicted by the KBM theorem), and the results are better than those using the
Euler method.
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Abstract: This paper deals with wildfire identification in the Alaska regions
as a semantic segmentation task using support vector machine classifiers. In-
stead of colour information represented by means of BGR channels, we proceed
with a normalized reflectance over 152 days so that such time series is assigned
to each pixel. We compare models associated with l1-loss and l2-loss func-
tions and stopping criteria based on a projected gradient and duality gap in
the presented benchmarks.

Keywords: wildfire identification, semantic segmentation, support vector ma-
chines, distributed training

MSC: 68T09, 68T45, 68W15

1. Introduction

Global climate change is increasing the frequency and intensity of ecological dis-
turbance; this is particularly true in high latitudes, where projects such as the NASA
ABoVE project (https://above.nasa.gov) are working to understand the effects of
increased climate-driven disturbances. Wildfires are one important source of distur-
bance, and can significantly affect forest carbon balance. Despite their importance,
however, it can be difficult to accurately quantify the effects of wildfire in places such
as boreal forests that are far from human habitation and infrastructure. Data from
remote sensing platforms and observatory networks can be of great use of this task,
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but these data sets can be vast, and analyzing them can require powerful computing
resources and tools that are designed to fully utilize them.

Popular methods are based on machine learning approaches including deep learn-
ing [8], where U-Net architecture or inception networks are typically used. In this
paper, we discuss an alternative approach for wildfire identification in the Alaska
regions using semantic segmentation that support vector machine classifiers are ex-
ploited. Instead of colour information, we assign changes of normalized reflectance
over time to each pixel so that corresponding attributes are represented by time se-
ries with 8-day period. Pixels are then categorized using the Monitoring Trends in
Burn Severity product. Additionally, we study the influence of stopping criteria on
model performance and training time on benchmarks presented in Section 3.2.

2. Support Vector Machines

Support Vector Machines is a set of methods belonging to supervised learning
algorithms used for classification, regression, or outliers detection. Since wildfire
identification is essentially a binary classification task, i.e. we have to decide if an area
is affected by fire or not, we will focus on formulations associated with classification
approaches employing SVMs in this paper. Considering underlying structures related
to SVMs, we can see them as a single perceptron that finds a learning function (called
model in the machine learning community) maximizing a geometric margin between
(training) samples and a discriminant hyperplane. This implicit ability guarantees
a generalization performance of the model, which can be described by means of
a particular case of the Tikhonov regularization in the following form:

arg min
f∈H

m−1

m∑
i=1

V (yi, f (xi))
2 + λ‖f‖2

H, (1)

where H is a hypothesis space of functions, ‖ · ‖H is a norm on the hypothesis space,
f : Rn → Y denotes mapping data (m training samples) to a label space, V : Y → Y
is a loss function, and λ ∈ R is a regularization parameter such that λ = 1

2C
.

Moreover, this theoretical framework provides us with an explanation related to the
regularization perspective of the SVM models so that a trade-off between bias and
variance is driven by parameter C.

In the following part of this paper, we introduce certain C-SVM formulations that
are associated with classification tasks concerning non-linearly separable (training)
samples and their relaxed-bias versions, where a bias term is considered as a scaled
parameter and included in an optimization problem by means of augmenting the
normal vector of a hyperplane w and samples with an additional dimension.

2.1. Soft maximum-margin classifier

Let us start with a standard SVM formulation introduced by Vapnik et al. in [3].
It was initially developed as a supervised binary classifier, i.e. an algorithm that
determines a function (model), which maps a training sample to a label (related
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to 2 categories in this case) such that it adapts itself to unseen data drawn from
the same distribution as the training ones. This essential model ability is called
generalization.

To describe the training phase of the SVM classifier more in detail, let us firstly
denote the training data set as follows:

T := {(x1, y1) , (x2, y2) , . . . , (xm, ym)}, (2)

where xi ∈ Rn (n ∈ N) is an i-th sample and yi ∈ {−1, 1} is its label, m is a number
of training samples. Further, let us consider that the samples are linearly separable,
i.e. it exists a separating hyperplane between the clusters of samples belonging to
these two categories. A model of a linear SVM is then represented in the form of
a maximum-margin hyperplane H so that:

H = 〈w,x〉 − b̂, (3)

where w is a normal vector of the hyperplane H, and b̂ = b
‖w‖ is a scalar called

a bias term that determines an offset in a direction of w, or −w in a case when b̂
is negative. Let us denote a bias b̂ as b for a more convenient notation in equations
in the following text. Remark that the maximum margins are defined by means of
locations associated with support vectors, and the width between these margins is
equal to 2

‖w‖ .
Maximizing the distance d corresponds to regularization of the weights w, which

is basically the prevention of overfitting a model to the training data set T . Regarding
the constraints arising from geometric margins, we can write an optimization problem
for finding a normal vector w and a bias b as follows:

arg min
w, b

1

2
〈w,w〉 s.t.

{
yi (〈w,xi〉 − b) ≥ 1,

i ∈ {1, 2, . . . ,m},
(4)

the constraint yi (〈w,xi〉 − b) ≥ 1 can be interpreted so that all training categorical
samples must lie on or above corresponding margins equal to −1 and 1, respectively.
Note, a solution of the optimization problem (4) exists only when the training sam-
ples T are linearly separable. To sort out the separability issue, we can exploit the
soft-margin SVM [3]. An idea beyond the approach is based on adding an auxil-
iary (regularization) term to (4), particularly, C

∑m
i=1 ξi

1, and, also, an additional
relaxation of the constraints related to the margins such that:

arg min
w, b, ξi

1

2
〈w,w〉+ C

m∑
i=1

ξi s.t.

{
yi (〈w,xi〉 − b) ≥ 1− ξi,
ξi ≥ 0, i ∈ {1, 2, . . . ,m},

(5)

1The term C
∑m

i=1 ξi regularises misclassification errors and restricts the complexity of the clas-
sifier in sense of overfitting a classification model.
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where ξi := max{0, 1 − [〈w,xi〉 − b]}. Essentially, the function quantifies the error
between the predicted and correct sample classification xi. If sample xi is correctly
classified, a value of the hinge loss function equals 0. In order of sample misclassi-
fication, a value of hinge loss function is proportional to the distance between the
respective margin and a misclassified sample.

The parameter C is a user-defined penalty, which determines the influence as-
sociated with the misclassification of samples on the objective function. Generally,
a higher value of C increases the importance of minimizing the hinge loss functions ξi
and also maximizing ‖w‖. This leads to minimizing the width of the margin and
may cause overfitting of a classifier to a training data set consequently. It means
a model has a high variance. A smaller value of the penalty C results in a wider mar-
gin that may cause a large number of misclassifications, i.e. a high bias of a model2.
The goal is to find a reasonable value of C such that a resulting model balances
a bias-variance tradeoff. Typically, the value is determined using hyperparameter
optimization techniques, e.g. grid-search combined with cross-validation.

To reduce the number of unknowns and employ our approach based on a deter-
ministic approach that uses the MPRPG [4] as an underlying solver, it stands for
Modified Proportioning with Reduced Gradient Projection, we can modify the pri-
mal formulation (5) so that it turns into an optimization problem with the following
structure:

α∗ = arg min
α∈Ω

1

2
αTAα− bTα, (6)

where Ω is a convex closed set defined by means of box constraints Ω := {α ∈ Rm |
u ≤ α ≤ l}. Practically, we can obtain a formulation analogous to the structure (6)
by dualizing primal formulation (5) such that:

arg min
α

1

2
αT Y TKY︸ ︷︷ ︸

G

α−αT s.t.

{
o ≤ α ≤ C,

yTα = 0,
(7)

where Y = diag(y), y = [y1, y2, . . . , ym]T , and  = [1, 1, . . . , 1] ∈ Rm. K ∈
Rm×m is the SPS (Symmetric Positive Semi-definite) matrix of inner products called
the Gram matrix such that K = XTX, where X = [x1, x2, . . . ,xm]. G denotes
the Hessian matrix, which is SPS either. Exploiting a derivative of the Lagrangian
with respect to ξ, we can determine the vector of Lagrange multipliers β so that
β = C−α, thus β does not occur in (7). This formulation is called dual l1-loss.

For obtaining a solution of the original (primal) problem, we introduce dual to
primal reconstruction formulas as follows:

w = XY α, (8)

2In this case, the term bias corresponds to a systematic error arising from wrong assumptions
that may lead to missing relevant relations between features and labels caused by means of a low
capability of a model.
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associated with the normal vector of the separating hyperplane, and the bias is
reconstructed by means of:

b =
1

card(J)

(
XT
∗J w − yJ

)
TJ , (9)

where J = {i | 0 < αi < C, i = 1, 2, . . . , k} is the support vector index set, card(J)
presents its cardinality, X∗J denotes the submatrix of the matrix X with the column
indices belonging to J ; yJ and J are subvectors of the vectors y and , respectively.
Using the reconstructed normal vector w and bias b, we set the decision rule:

sgn (〈w,xi〉+ b) =

{
+1 . . . xi ∈ Class A,

−1 . . . xi ∈ Class B.
(10)

2.2. Hessian matrix regularization

The Hessian matrix G corresponding to the dual formulation (7) is SPS, which
implies the underlying optimization problem has a non-unique solution. In this
subsection, we modify the primal formulation (5) in such a way that the Hessian in
dual formulation becomes SPD (Symmetric Positive Definite) [10, 9]. It implies that
the resulting optimization problem is strictly convex, and its solution is unique. An
idea beyond the adjustment is based on substitution l1-norm of loss function by the
l2-norm, i.e. the squared loss function, in the objective function so that (7) results
into the following form:

arg min
w, b, ξi

1

2
〈w,w〉+

C

2

m∑
i=1

ξ2
i s.t.

{
yi (〈w,xi〉+ b) ≥ 1− ξi,
i ∈ {1, 2, . . . ,m}.

(11)

Analysing the formulation above, we can simply observe the term that quantifies
misclassification error

∑m
i=1 ξ

2
i ≥ 0. Therefore, we do not consider ξi ≥ 0 as a con-

straint. The formulation (11) is called the primal l2-loss SVM. As in the case of the
l1-loss SVM, we derive a dual formulation. Using the Lagrange duality and evalu-
ating the Karush–Kuhn–Tucker conditions, the primal formulation (11) transforms
into the dual one so that for any C > 0:

arg min
α

1

2
αT
(
G+ C−1I

)
α−αT s.t.

{
 ≤ α,
yTα = .

(12)

While the Hessian G is regularized by a matrix C−1I, it avoids linear dependency of
columns also arising from possible multicollinearity of the training samples. Then,
the matrix becomes full-rank SPD. The optimization problem and the quality of
its solution are practically data-driven, i.e. highly dependent on the data nature.
Therefore, we can say precisely that the associated optimization problem could be
more computationally stable, and a convergence rate of an underlying solver could
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be faster than in the case of the l1-loss SVM. On the other hand, l1-loss SVM could
produce a sparse and more robust model in the sense of performance score. Then,
we adapt the support vector index set J such that:

J = {i | 0 < αi, i = 1, 2, . . . , k} (13)

for the reconstruction formulas (8), (9) related to normal vector w of hyperplane H
and bias b, respectively.

2.3. Relaxed-bias approaches

The standard soft-margin SVM solves the problem of finding a classification
model in the form of the maximal-margin hyperplane (3). In the case of the relaxed-
bias classification [7], we do not consider the bias b in a classification model. However,
we include it into the problem by means of augmenting the vector w and each sam-

ple xi with an additional dimension so that ŵ ←
[
w
B

]
, x̂i ←

[
xi
γ

]
, where γ ∈ R+ is

a user-defined variable, which is typically set to 1. Let p ∈ {1, 2} then the problem

of finding a hyperplane Ĥ = 〈ŵ, ŵ〉 can be formulated as a constrained optimization
problem in the following primal formulation:

arg min
ŵ, ξi

1

2
〈ŵ, ŵ〉 +

C

p

n∑
i=1

ξ̂pi s.t.

{
yi 〈ŵ, x̂i〉 ≥ 1− ξ̂i,
ξ̂i ≥ 0 if p = 1, i ∈ {1, 2, . . . , n},

(14)

where ξ̂i = max{0, 1 − yi 〈ŵ, x̂i〉} is the hinge loss function related to augmented
samples x̂i. Generally, we can say the minimizer associated with formulation (14)

corresponding to a rotation of the separating hyperplane Ĥ ∈ Rn in a one-dimension
higher feature-space Rn+1 such that the maximizing of geometric margins are satis-
fied.

3. Wildfire identification as semantic segmentation task

Semantic segmentation is a computer vision task for which most recent methods
are based on deep learning approaches, where neural networks of U-Net type archi-
tectures are typically used. Actually, semantic segmentation is associated with image
classification at a pixel level. It means that every pixel is assigned to a category such
that an image segmentation mask is created. In common semantic segmentation,
labelled colour images with the BGR (blue-green-red) channel order are used as in-
puts. The pre-trained encoder of the U-Net extracts features and patterns from
spatial images, and the decoder projects these lower resolution feature onto the pixel
space in higher resolution to get a dense classification.

We show up an alternative approach that exploits a spectral reflectance cor-
rected for the atmospheric condition instead of colour information. An essential
idea of these corrections follows up simulating the propagation of electromagnetic
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waves in a geogas system to obtain surface reflectance without emission, e.g. remove
a contribution of atmospheric aerosol scattering.

To estimate a spectral surface reflectance corresponding to 500 m spatial resolu-
tion at a pixel, we use the MODIS (Moderate Resolution Imaging Spectroradiome-
ter) instrument that data was extracted by the Google Earth Engine running at
cloud https://earthengine.google.com. Essentially, the reflectance is a ratio of
reflected energy to incident radiation φr

φ
as a function of the wavelength. The MODIS

product called MOD09A1 (https://modis.gsfc.nasa.gov/data/dataprod/mod09.
php) provides 7 bands associated with this electromagnetic spectrum ranging from
459 nm to 2155 nm as an 8-day composite. To describe a region affected by fire,
we study changes in normalized reflectance over time periods so that features corre-
sponding to each pixel are represented by time series related to the 7 bands mentioned
above with an 8-day period. The pixels are then categorized using boundaries col-
lected from Monitoring Trends in Burn Severity (https://www.mtbs.gov/). Such
samples are being classified using SVM implemented in our in-house software Per-
monSVM.

3.1. PermonSVM: Classification tool based on PETSc framework

The PermonSVM package [11] is a part of the PERMON toolbox . This toolbox
is designed for usage in a distributed environment containing hundreds or thousands
of computational cores. Technically, it is an extension of the core package called
PermonQP [6], from which it inherits environment basic structures, initialization
routines, a build system, and utilizes computational routines implemented in the
core package PermonQP. Programmatically, a core functionality associated with the
PERMON toolbox is written on top of the PETSc framework [1]. It follows the same
design and coding style that makes it easy to use for anyone familiar with PETSc.

PermonSVM currently supports parallel reading of the SVMLight, HDF5, and
PETSc binary file formats, solutions of more than 4 problem formulations of the
related classification problems, k-fold and stratified k-fold cross-validation. The un-
derlying QP problem related to SVM with implicitly represented the Hessian matrix,
in which the Gram matrix XTX is not assembled, and is computed by means of
solvers provided by the PermonQP package or PETSc framework. All PERMON
modules are developed as open-source software under the BSD–2–Clause license.

3.2. Benchmarks

We present results associated with state-of-the-art investigating wildfire detec-
tion so that data was collected and processed in a way already mentioned above.
In our experiments, we study wildfires in the Alaska regions in 2004. The wildfires
across Alaska are the dominant disturbance, and creating frameworks for quantifi-
cation is important to long-term scientific projects such as the U.S. Department
of Energy project Next Generation of Arctic Ecosystem Experiments. The 2004
Alaska wildfire season was the worst on record in the U.S. state of Alaska in terms
of area burned (27,000 km2). Looking at Table 1, our toy data set used to present
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Figure 1: Areas in Alaska affected by wildfires that we model in our experiments.
Red squares represent the training data set and green ones are related to test data
set. Data are accumulated over 152 days from May to Semptember

state-of-the-art results contains 500, 000 samples split into training and test data
sets consisting of 360, 000 and 240, 000 samples, respectively. These samples are
associated with changing reflectance over 152 days from May to September.

We computed the following semantic segmentation results on KAROLINA, which
is a combination of HPE Apollo 2000 and Apollo 6500 systems used for HPC work-
loads such as AI and other data-intensive applications, for example.

mod09ak 2004 #Wildfires #Background #Attributes
Training 46, 851 (13.01%) 313, 149 (86.99%) 133
Test 28, 351 (11.81%) 211, 649 (88.19%) 133

Table 1: The mod09ak 2004 data set description related to training and test ones.
Proportions of classes in the data sets are pointed out as percents.

A critical part of any data-related pipeline is associated with stopping criteria.
Choosing the right strategy to terminate an underlying optimization solver influ-
ences the quality of a resulting model. In our experiments, we explored an opti-
mization solver called MPRGP employed in our classification problems that models
were computed employing relaxed-bias formulations for l1 and l2 loss types pre-
sented in Section 2.3. An expansion of an active set was performed using a projected
conjugate (CG) gradient, and Γ = 100 was set to determine proportionality. Misclas-
sification errors were penalized with C = 1, i.e. a default value. A standard stopping
criterion used in MPRGP involves a norm of projected gradient ‖gp‖ compared with
a relative norm of a dual right-hand side bdual as follows:

‖gp‖ ≤ ε‖bdual‖. (15)
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However, this terminating condition does not take into account model quality.
A reasonable approach could be based on monitoring a loss function and including it
in a stopping criterion. In the case of SVM, we consider a specific type of a loss func-
tion called a hinge loss function ξ := max{0, 1− [〈w,x〉 − b]} defined in Section 2.1
and this term is incorporated in a primal functional. Moreover, we can prove there
is no gap between primal and dual functional at its optimal solution for the case of
the l2-loss SVM formulation. It holds a strong duality. Regarding these properties,
we can use stopping criteria based on a duality gap for the l2-loss SVM as follows:

|p (w, b, ξ)− d(α) | ≤ ε|p (w, b, ξ) |, (16)

where

p (w, b, ξ) =
1

2
〈ŵ, ŵ〉 +

C

2

n∑
i=1

ξ̂2
i , (17)

and

d (α) =
1

2
αT
(
G+ C−1I

)
α−αT (18)

are a primal and a dual functional related to relaxed-bias l2-loss SVM formulations,
respectively; ε represents a relative tolerance. The attained results are summarized
in Table 2 and Table 3.

Dataset Loss Stop. criteria Hessian mult. Loss val. Train. time [s]

mod09ak 2004
l1 (15) 2962 2.28e4 22.67

l2
(15) 1025 3.03e4 6.96
(16) 1029 3.00e4 15.60

Table 2: Attained results using 64 MPI processes (KAROLINA). Solver: MPRGP
so that an expansion step is performed using the projected CG step, Γ = 100 in
proportion criterion, a relative tolerance ε was set to 0.1; penalty C = 1.

The overall performance of attained models does not significantly differ as mea-
sured by the F1 score, which is a harmonic mean of precision and sensitivity, as
presented in Table 3. However, we can see that some models perform slightly better
than others when we compare them using other metrics. Analyzing the influence of
the proposed stopping criteria based on the duality gap on model scores, we can see
that the l2-loss model, when the training process was terminated using the condi-
tion (16), behaves slightly better both precision and sensitivity scores on a test data
set than the l2-loss model trained employing the MPRGP solver stopped by means
of the terminate condition (15).
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Dataset Loss Stopping criteria precision [%] sensitivity [%] F1

mod09ak 2004
l1 (15) 84.12 94.58 0.89

l2
(15) 83.58 92.81 0.89
(16) 85.33 93.13 0.89

Table 3: Influence of stopping criteria on the model performance scores on the test
data set.

As we mentioned in Section 2.2, the l1-loss model could be a more robust in
the sense of its performance than the one based on the l2-loss function. It could be
ambitious to make such a conclusion merely by looking at the performance scores
since we can see that a precision score is higher for l2-loss and, on the other side,
sensitivity is higher for l1 loss. Nevertheless, it differs in the value of loss functions,
which represent overall misclassification errors, pointed out in Table 2. From this
table, we can easily see that the l1-loss-based model generalizes a training data
set better than the l2-loss-based one. Assuming the training times of each model,
we can see that evaluating the time of stopping criteria (16) is time-consuming and
almost 2 times slower than for (15), and training the l1-loss model is nearly 3.3 times
slower than for l2-loss trained to employ the MPRGP solver terminated using the
condition (15). From the observations above, it seems the l2-loss model that its
training was stopped exploiting the stopping criteria (16) could be a good trade-off
among l1-loss and l2-loss models, when the stopping condition (15) was used in
during the models training.

Dataset Loss
∑

Hes. mult. Loss val. Train. time [s]

mod09ak 2004
l1 34622 1.80e5 73.82
l2 51967 2.24e5 112.28

Table 4: Solutions related to the complete SVM formulations using SMALXE +
MPRGP. A default stopping condition is used. Results are attained using 64 MPI
processes on KAROLINA. Setting of an inner solver: Γ = 100, a relative tolerance
εinner = 0.1; εouter = 1e − 2 and divtol = 1e10 for an outer loop (SMALXE).
Misclassification penalty C = 1.

The attained models presented above can be viewed as solutions related to a spe-
cial case of the Tikhonov regularization (1) such that a bias term b is relaxed. This
approach simplifies the SVM formulations (7), (12), i.e. the complete SVM for-
mulations with bounds and equality constraints. It leads to problems that are nu-
merically cheaply to solve than the original ones. We demonstrate computational
demands on training models employing the complete SVM formulations in the follow-
ing numerical experiments. We employed the Semimonotonic augmented Lagrangian
(SMALXE) algorithm [5] that is “pass-through” solver taking care of equality con-
straints (a default stopping condition for SMALXE is used in the following numerical
experiments). By this approach, we splitted (7), or (12) for l2-loss case, into two
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sub-problems such that an equality constraint and bounds are handled separately,
one after another. An outer loop is performed using the augmented Lagrangians and
bound constrained optimization problem is computed by means of an inner solver –
MPRGP in our case. The results are summarized in Table 4 and Table 5.

Looking at elapsed times presented in Table 4, we can see that training a model
is 3.26 times slower for the complete l1-loss formulation (7) than in case of a relaxed
formulation of this problem (14) (for p = 1). Moreover, we can observe that a value
of a loss function (a quantification of misclassification error) is 7.89 times higher than
its relaxed version. It is similar to training a model employing the complete l2-loss
formulation when a default stopping condition is exploited. A training time is 16.1
times slower, and a value associated with a loss function is 7.39 times higher.

Dataset Loss precision [%] sensitivity [%] F1

mod09ak 2004
l1 82.80 96.18 0.89
l2 82.98 95.63 0.89

Table 5: The best perfomance scores of models trained employing the complete SVM
formulations (on the test data set).

The performance scores of models on the test data set are summarized in Table 5.
They do not significantly differ from the scores attained employing the relaxed ver-
sions of the SVM formulation in Table 3; however, a true positive rate (sensitivity)
is slightly higher. It means that models identify fire occurrences (true positives)
better than the ones with relaxed bias at the cost of decreasing precision, i.e. a false
positive rate.

Dataset Solver precision sensitivity F1
mod09ak 2004 XGBoost 97.05 89.00 0.93

Table 6: Results attained using the XGBoost solver.

We compared the performance scores of attained classification models employing
PermonSVM with a model trained by means of the XGBoost (eXtreme Gradient
Boosting) solver [2]. It is based on a boosted tree method. The results are presented
in Table 6. The overall scores measured by means of F1 score are higher for a model
trained by XGBoost. However, PermonSVM produces models with higher sensitivity
over precision, while the XGBoost model has a higher precision over sensitivity. This
means PermonSVM models perform better at predicting positive events (wildfires)
over determining pixel areas that are non-affected by fire. Predicting more false
negatives (FN) over false positives (FP) would be more acceptable for natural hazard
applications than the other way around.
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4. Conclusions

We studied state-of-the-art semantic segmentation for wildfire identification in
the Alaska regions so that a classification part was based on the SVM methods
implemented in the toolbox PERMON for distributed computing, specifically in
an extension called PermonSVM. Instead of BGR channels associated with pixel
colour information, we assigned time series monitoring changes in reflectance over
152 days. In the presented numerical experiments, we focused on the influence of
two stopping criteria based on a norm of projected gradient and a duality gap on
model performance for the relaxed l2-loss SVM. Attained results were compared
and discussed with the l1-loss SVM (relaxed). As an underlying solver for model
training, we employed the MPRGP solver – a deterministic active-set method.

From the qualities of models in the sense of performance scores and training times,
it seems than a terminating training process using stopping criteria based on duality
gap for l2-loss is a good trade-off between the l1-loss and the l2-loss models that
a training process stopped exploiting a terminating condition incorporating a pro-
jected gradient. Such attained model performs better than l2-loss case. However,
the training process was almost 2 times slower. Compared to the l1-loss model, it
performs worse in the sense of a hinge-loss function value even so the training process
is 1.45 times faster.

We compared the attained models employing relaxed formulations related to the
SVM problems with models trained using the complete SVM formulations for both
l1-loss and l2-loss functions as well. From the numerical experiments, we concluded
that it is suitable to use relaxed versions of the SVM formulation for training models
related to our classification problem because it takes a longer time to train models
using complete SVM formulations than in the cases of their relaxed versions and
attained models are slightly worse.

We studied qualities related to SVM models trained by means of PermonSVM
with boosted tree methods implemented in XGBoost software. We observed that
PermonSVM produces models with a higher sensitivity over precision (better at pre-
dicting positive events (wildfires) over determining pixel areas that are non-affected
by fire). In contrast, the XGBoost model has a higher precision over sensitivity. We
think predicting more false negatives (FN) over false positives (FP) would be more
acceptable for natural hazard applications than the other way around.
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Sokolovská 83 186, 75 Praha 8, Czech Republic

pozza@karlin.mff.cuni.cz, buggenhout@karlin.mff.cuni.cz

Abstract: Solving systems of non-autonomous ordinary differential equa-
tions (ODE) is a crucial and often challenging problem. Recently a new ap-
proach was introduced based on a generalization of the Volterra composition.
In this work, we explain the main ideas at the core of this approach in the
simpler setting of a scalar ODE. Understanding the scalar case is fundamental
since the method can be straightforwardly extended to the more challenging
problem of systems of ODEs. Numerical examples illustrate the method’s
efficacy and properties in the scalar case.
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1. Introduction

Systems of non-autonomous linear ordinary differential equations arise in a variety
of contexts [1–3,10,11,13]. Yet, their solution remains surprisingly difficult to obtain,
both formally and numerically, especially when dealing with systems of large-to-huge
size. Consider an N × N matrix Ã(t) depending on the variable t ∈ I ⊆ R. The
unique solution Us(t) of the system

Ã(t)Us(t) =
d

dt
Us(t), Us(s) = IN , for t ≥ s, t, s ∈ I, (1)

with IN the N × N identity matrix, is an N × N matrix-valued function known as
the time-ordered exponential of Ã(t). If Ã(τ1)Ã(τ2) = Ã(τ2)Ã(τ1) for all τ1, τ2 ∈ I,
then the time-ordered exponential can be expressed as

Us(t) = exp

(∫ t

s

Ã(τ) dτ

)
.

In general, however, Us(t) has no known simple expression in terms of Ã(t).
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In [5, 6], a new expression for the solution is given using the path-sum approach,
a method able to express each element of Us(t) as a finite sequence of integral equa-
tions. However, this requires solving an NP-hard problem. In [7–9], the NP-hard
problem is overcome by introducing the ?-Lanczos method, a constructive method
able to tridiagonalize Ã(t). At the heart of both the path-sum and ?-Lanczos method
is a non-commutative convolution-like product, denoted by ?, defined between cer-
tain distributions [12]. Thanks to this product, the solution of (1) can be expressed
through the ?-product inverse [7].

In this work, we aim to illustrate to the numerical mathematics community the
?-product and how it can be used to solve an ODE numerically. For this reason,
we restrict the presentation to the simpler case in which the ODE (1) is a scalar
equation. While this framework may look too simple to show the potential of the
newly introduced technique, the reader should keep in mind that the results and
construction we illustrate for the scalar case can be straightforwardly extended to
the matrix case in full generality.

In Section 2, we give an introduction to the ?-product and the related expression
for the solution of a scalar ODE. Section 3 discretizes the ?-product. As a con-
sequence, the ODE solution can be obtained by solving a linear system. Several
properties of the linear system are numerically investigated in Section 4. The nu-
merical experiments in Section 5 show that the presented strategy can compute the
solution up to machine precision. Section 6 concludes the presentation.

2. ODE solution by the ?-product approach

Given two appropriate bivariate functions f̃1(t, s), f̃2(t, s), the Volterra composi-
tion, introduced by Vito Volterra (e.g., [16]), is defined as(

f̃2 ?v f̃1

)
(t, s) :=

∫ t

s

f̃2(t, τ)f̃1(τ, s) dτ.

For our purposes, it suffices to assume f̃1 and f̃2 to be smooth (i.e., infinitely differ-
entiable) on both variables over a bounded interval I = [0, T ] to have a well-defined
operation for every t, s ∈ I. Therefore, from now on, a function marked with a tilde
will stand for a smooth function in both t and s over I. Since the Volterra com-
position is closed for such functions, we are allowed to define the kth ?v-power of
a function f̃ , that is, f̃ ?v1 = f̃ , and

f̃ ?vk := f̃ ?v f̃ · · · ?v f̃ =

=

∫ t

s

f̃(t, τ1)

∫ τ1

s

f̃(τ1, τ2) · · ·
∫ τk−2

s

f̃(τk−2, τk−1)f̃(τk−1, s) dτk−1 · · · dτ2 dτ1

for k > 1 with the convention τ0 = t. Moreover, the operation is also defined for
univariate functions f̃2(t):(

f̃2(t) ?v f̃1(t, s)
)
(t, s) :=

∫ t

s

f̃2(t)f̃1(τ, s) dτ = f̃2(t)

∫ t

s

f̃1(τ, s) dτ.
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It is possible to use the Volterra composition to express the solution of the fol-
lowing differential equation for every initial time s ∈ I.

d

dt
ys(t) = f̃(t)ys(t), ys(s) = 1, t ∈ [s, T ] ⊆ R; (2)

see, e.g., [5]. In fact, using Picard iterations, we get

d

dt
ys(t) = f̃(t)ys(t), ys(s) = 1

↓ integration

ys(t) = 1 +

∫ t

s

f̃(τ)ys(τ)dτ

↓ integration

ys(t) = 1 +

∫ t

s

f̃(τ)

(
1 +

∫ τ

s

f̃(ρ)ys(ρ)dρ

)
dτ

= 1 +

∫ t

s

f̃(τ) +

∫ τ

s

f̃(τ)f̃(ρ)ys(ρ) dρ dτ

↓ . . .

ys(t) = 1 +

∫ t

s

f̃(τ)dτ +

∫ t

s

f̃ ?v2(τ)dτ + . . . ,

from which we obtain the expression

ys(t) = 1 +

∫ t

s

∞∑
k=1

f̃ ?vk(τ) dτ. (3)

The Volterra composition is not a product and lacks essential features, for in-
stance, the identity. For this reason, the Volterra composition has been extended,
obtaining the so-called ?-product [7] that we briefly introduce in the following. Con-
sider the class D(I) of all the distributions d that can be written as

d(t, s) = d̃(t, s)Θ(t− s) +
N∑
i=0

d̃i(t, s)δ
(i)(t− s),

where N is a finite integer, d̃, d̃i are smooth bivariate functions over I×I, Θ(·) stands
for the Heaviside theta function

Θ(t− s) =

{
1, t ≥ s,

0, t < s
,

and δ(i)(·) is the ith derivative of the Dirac delta distribution δ(·) = δ(0)(·). We can
endow the class D(I) with a non-commutative algebraic structure by defining the
?-product as (

f2 ? f1

)
(t, s) :=

∫
I

f2(t, τ)f1(τ, s) dτ, f1, f2 ∈ D(I). (4)
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The ?-product is associative over D(I), D(I) is closed under ?-multiplication, and
the identity element with respect to the ?-product is the Dirac delta distribution,
1? := δ(t− s), see, e.g., [7].

Consider the subclass C∞Θ (I) ⊂ D(I) comprising those distributions of the form

f(t, s) = f̃(t, s)Θ(t− s).

Then, the ?-product between f1, f2 ∈ C∞Θ (I) reduces to the Volterra composition(
f2 ? f1

)
(t, s) =

∫
I

f̃2(t, τ)f̃1(τ, s)Θ(t− τ)Θ(τ − s) dτ,

= Θ(t− s)
∫ t

s

f̃2(t, τ)f̃1(τ, s) dτ = Θ(t− s)(f̃2 ?v f̃1)(t, s).

As a consequence, using (3), we can express the solution of (2) for every s ∈ I as

ys(t) = u(t, s) = Θ(t− s) ? R?(f), (5)

where f(t, s) = f̃(t)Θ(t− s) and R?(f) is the ?-resolvent of f , i.e.,

R?(f) = δ(t− s) +
∞∑
k=1

f(t, s)?k,

with f(t, s)?k = Θ(t − s)f̃(t)?vk. Note that the series
∑∞

k=1 f(t, s)?k converges for
every f ∈ C∞Θ (I). The ?-product easily extends to matrices composed of elements
from D(I) by extending the scalar multiplication appearing in the integrand in (4)
to the usual matrix-matrix multiplication; see [9] for more details.

While expression (5) is compact, the ?-resolvent definition hides an infinite series
of nested integrals. Therefore, at first sight, it does not seem like a convenient
expression. In the next section, we effectively solve this problem by showing that it is
possible to approximate the ?-product by the usual matrix-matrix product between
(time-independent) matrices. Consequently, for a fixed s, expression (5) can be
approximated relatively cheaply by solving a linear system.

3. Discretization of the ?-product

In this section, we describe an effective strategy for approximating the ?-product.
Consider a sequence of orthonormal functions {pk}k over the bounded interval I =
[0, T ], i.e., ∫

I

pk(τ)p`(τ)dτ =

{
0, if k 6= `,

1, if k = `,

so that {pk}k is a basis for the space of smooth functions over I. Note that the
functions pk are not in D(I); hence we cannot (formally) ?-multiply them. Consider
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a distribution f ∈ C∞Θ (I). The function f(t, s) = f̃(t, s)Θ(t− s) is piecewise smooth,
therefore, we can choose the basis {pk}k so that

f(t, s) =
∞∑
k=0

∞∑
`=0

fk,` pk(t)p`(s), t 6= s, t, s ∈ I, (6)

with coefficients

fk,` =

∫
I

∫
I

f(τ, ρ)pk(τ)p`(ρ) dρ dτ.

For instance, the basis {pk}k can be set as the sequence of shifted Legendre polyno-
mials (e.g., [14, p. 55]). Defining the coefficient matrix FM and the vector φM(t) as

FM :=


f0,0 f0,1 . . . f0,M−1

f1,0 f1,1 . . . f1,M−1
...

...
...

fM−1,0 fM−1,1 . . . fM−1,M−1

 , φM(t) :=


p0(s)
p1(s)

...
pM−1(s)

 , (7)

the truncated expansion series can be written in the matrix form:

fM(t, s) :=
M−1∑
k=0

M−1∑
`=0

fk,` pk(t)p`(s) = φM(t)TFM φM(s).

Consider f, g, h ∈ C∞Θ (I) so that h = f ?g, and the related coefficient matrices (7),
respectively, FM , GM , HM . By replacing f and g with their expansion (6), it is not
difficult to show that the expansion coefficients for h are given by

hk,` =
∞∑
j=0

fk,j gj,`, (8)

assuming the latter series converges (such an assumption is grounded on the numer-
ical experiments of the next section). As a consequence, we can approximate HM by
the expression

HM ≈ ĤM := FMGM , (9)

i.e., the ?-product can be approximated by the usual matrix-matrix multiplication
of the related coefficient matrices.

The approximation (9) is affected by a truncation error. Therefore, fixing k and `,
if the magnitude of the product fk,j · gj,` in (8) does not decay quickly enough for

j → ∞, then the truncation error (HM)k,` − (ĤM)k,` can be too large for practical
purposes. Luckily, since f ∈ C∞Θ , numerical considerations illustrate that FM and GM

are numerically banded for a certain choice of {pk}k; for instance, see Section 4 where
we choose the shifted Legendre polynomials. Therefore, M does not need to be too
large to reach a small truncation error in the approximation (9), excluding the last
rows of the matrix ĤM where the truncation error can still be significant. Further
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details and explanations on this matter are being developed and will be presented in
future work. For the moment, in Section 4, we provide numerical evidence of these
claims.

To conclude the presentation, we must discuss the convergence behavior of ex-
pansion (6). Indeed, since f is discontinuous for t = s, the expansion may not
converge quickly (or may not converge) to f(t, s) for every t, s ∈ I; see, e.g., [14, 15]
for the polynomial case. Nevertheless, fixing s = 0, the univariate function f(t, 0) =
f̃(t, 0)Θ(t− 0) = f̃(t, 0) is smooth over I = [0, T ]. Therefore

f(t, 0) =
∞∑
k=0

akpk(t) =
∞∑
k=0

pk(t)
∞∑
`=0

fk,` p`(0),

with ak =
∑∞

`=0(fk,` p`(0)). As a consequence, we can approximate the function
f(t, 0) by the expression

f(t, 0) ≈ φM(t)TFM φM(0),

and expect to reach a small enough accuracy for a (relatively) small M . Section 5
illustrates with several numerical examples that it is possible to achieve machine
precision accuracy for a small value of M .

Consider the function u(t, s) in (5). Using the previous construction, the related
coefficient matrix UM , i.e., such that u(t, s) ≈ φ(t)TM UM φM(s), can be approxi-
mated by

UM ≈ TM(IM − FM)−1,

where TM is the coefficient matrix of Θ(t − s), and FM is the coefficient matrix of
f̃(t)Θ(t − s), with f̃(t) from (2). Since u(t, s) ∈ C∞Θ , for s = 0 we can approximate
the solution of (2) by the formula:

y0(t) ≈ φM(t)TUM φM(0) ≈ φM(t)TTM(IM − FM)−1φM(0).

Then, the vector uM = TMx contains the approximated expansion coefficients of y0(t),
i.e.,

y0(t) ≈ φM(t)TuM , for every t ∈ I,
where x is the solution of the linear system

(IM − FM)x = φM(0). (10)

4. Properties of the coefficient matrix

In this section, we illustrate several properties of the coefficient matrices (7)
through numerical examples. We set I = [0, 1], and, as the sequence of orthonormal
functions, we choose the sequence of orthonormal shifted Legendre polynomials, i.e.,
the sequence of polynomials {pk}k such that∫ 1

0

pk(τ)p`(τ) dτ =

{
1, if k = `,

0, if k 6= `,
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Functions f̃1 = 1 f̃2 = t f̃3 = t3 f̃4 = cos(t) f̃5 = log(t+ 1)
M = 25

Num. band. 1 2 4 13 20
Spectral radius 0.0592 0.0357 0.0238 0.0480 0.0271
σmin 2.42e− 3 3.50e− 5 9.68e− 9 1.74e− 3 3.42e− 5
σmax 1.2732 0.9447 0.6864 0.9694 0.6938

M = 100
Num. band. 1 2 4 13 20
Spectral radius 0.0556 0.0296 0.0155 0.0444 0.0223
σmin 1.56e− 4 1.57e− 7 2.33e− 13 1.10e− 4 1.56e− 7
σmax 1.2732 0.9447 0.6864 0.9694 0.6938

M = 500
Num. band. 1 2 4 13 20
Spectral radius 0.0554 0.0297 0.0146 0.0458 0.0215
σmin 6.27e− 6 2.59e− 10 6.58e− 19 2.59e− 10 3.42e− 5
σmax 1.2732 0.9447 0.6864 0.9694 0.6938

Table 1: Properties of coefficient matrices F
(k)
M .

with k, ` the degree of the polynomial. In the following, we consider the functions
fk(t, s) = f̃k(t)Θ(t− s) from Table 1 and the related M ×M coefficient matrix F

(k)
M

defined in (7). The numerical experiments were performed using MatLab R2022a.

Table 1 reports the numerical bandwidth of each coefficient matrix F
(k)
M for

M = 25, 100, 500. With numerical bandwidth, we mean the bandwidth of the matrix
once all its elements with a magnitude smaller than the machine precision have been
rounded to zero. First, we observe that the numerical bandwidth is the same for
every value of M . Moreover, we note that for the polynomials f̃1, f̃2, f̃3, the corre-
sponding bandwidth is equal to the degree of the polynomial plus one. Finally, the
functions f4(t, s) = cos(t)Θ(t− s), f5(t, s) = log(t + 1)Θ(t− s) are also numerically
banded.

Table 1 also reports the spectral radius and the minimal and maximal singular
values (respectively σmin, σmax) of each F

(k)
M . While both the spectral radius and σmax

do not vary significantly for M = 25, 100, 500, σmin becomes smaller as M increases.
As the linear system (10) involves the shifted matrix IM − F (k)

M , it is important to
note that all the computed spectral radii are smaller than 1.

Finally, Figure 1 presents the spectra of the matrices F
(1)
M and F

(4)
M for M =

25, 100, 500. For both the functions, as M increases, the spectrum tends to distribute
in a circle on the right-half of the complex plane, closer and closer to the origin. We
do not report the spectrum plots of the other matrices considered above since they
display analogous behavior.
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Figure 1: Spectrum of the coefficient matrices F
(1)
M (left), F

(4)
M (right) defined in (7),

for M = 25, 100, 500.
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5. Numerical experiments

In this section, we test the numerical method explained in Section 3 on the ODE

d

dt
y(t) = f̃k(t)y(t), y(0) = 1, t ∈ I = [0, 1], (11)

for each function f̃k from Table 1. More precisely, the method works as follows:

1. We discretize fk(t, s) = f̃k(t)Θ(t − s) as described in Section 3, obtaining the

matrix F
(k)
M . We use as an orthonormal basis the shifted orthonormal Legendre

polynomials from Section 4.

2. Let b be the numerical bandwidth of F
(k)
M ; we define the matrix F̂

(k)
M by setting

the last b rows of the matrix F
(k)
M to zero. This has proven helpful in reducing

the accumulation of truncation errors in the last rows of the solution of (10).

3. We solve the (banded) linear system(
IM − F̂ (k)

M

)
x = φM(0),

using the Matlab backslash \ operation.

4. The solution of (11) is approximated by

y(t) ≈ ŷM(t) := φM(t)TuM with uM = Tm x. (12)

In Table 2, we report the maximal relative error of approximation (12) over I
for M = 25, 100. The relative errors were computed on an equispaced mesh of 100
points over [0, 1]. As a reference value for the solution, we considered the function
exp(

∫ t
0
f̃k(τ) dτ). We compare our results with the maximal relative errors obtained

using the Matlab methods ode45 and ode89 with relative and absolute tolerances set
equal to eps = 2.2204e− 16. For M = 100, Table 2 shows that approximation (12)
is always better than the others. On the other hand, for M = 25, we obtain worse
results for k = 3, 4, 5, showing that it is possible to calibrate the accuracy of the
solution by the matrix size.

With these experiments, we do not want to claim anything about the performance
of our method compared to well-established explicit methods such as ode45 and
ode89. The examples considered here are certainly not enough for drawing any
conclusion. The table aims to show that approximation (12) can compete in accuracy
with well-established approaches, a promising result for our future work.

6. Conclusion and future work

In this work, we have explained how to express the solution of a scalar linear
ODE using the so-called ?-product. Moreover, we have shown how to derive a nu-
merical method from this expression and successfully tested it on several examples.
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Functions f̃1 = 1 f̃2 = t f̃3 = t3 f̃4 = cos(t) f̃5 = log(t+ 1)
ŷ25(t) 1.20e− 15 1.11e− 15 3.36e− 14 1.37e− 09 4.04e− 04
ŷ100(t) 1.20e− 15 1.11e− 15 8.88e− 16 1.22e− 15 9.77e− 16
ode45 9.76e− 15 4.61e− 13 1.53e− 12 1.13e− 13 9.72e− 13
ode89 1.17e− 13 6.69e− 14 3.63e− 14 1.13e− 13 9.92e− 14

Table 2: Maximal relative error over I = [0, 1] of ode45, ode89 methods and of the
approximation ŷM(t) in (12) for the solution of the ODE (11).

The numerical method requires solving a linear system whose properties have also
been numerically investigated. Concerning the numerical efficiency of the introduced
method, other possible approaches in the solution of the linear system may be used
– for instance, Krylov subspace methods. Furthermore, since the solution depends
continuously on the initial time parameter s, we are also investigating the use of
acceleration methods such as the one in [4]. In addition, we are currently developing
an efficient method for computing the coefficient matrix FM .

Given a smooth matrix-valued function Ã(t) ∈ CN×N , the solution of the system

d

dt
Ys(t) = Ã(t)Ys(t), Y (s) = IN , t ≥ s, t, s ∈ I,

can also be expressed as

Ys(t) = U(t, s) = Θ(t− s) ? R?(Ã(t)Θ(t− s)), t, s ∈ I,

following the results in [5]. Therefore, the scalar method we have described can be
generalized to the more challenging problem offered by systems of non-autonomous
linear ODEs. The results discussed in this work are thus promising for developing
new efficient methods for computing Ys(t).
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Abstract: Identification problem is a framework of mathematical problems
dealing with the search for optimal values of the unknown coefficients of the
considered model. Using experimentally measured data, the aim of this work
is to determine the coefficients of the given differential equation. This paper
deals with the extension of the continuous dependence results for the Gao
beam identification problem with different types of boundary conditions by
using appropriate analytical inequalities with a special attention given to the
Wirtinger’s inequality and its modification. On the basis of these results for
the different types of the boundary conditions the existence theorem for the
identification problem can be proven.
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ity, Wirtinger-Poincaré-Almansi inequality
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1. Introduction

Beams are commonly used in engineering constructions and there are many prac-
tical applications for parameter identification problem. This paper deals with a non-
linear Gao beam model. A problem of identifying coefficients in the Gao beam is
presented in a recent paper [11], where the aim is to find unknown material param-
eters for this beam by using an optimal control approach. The existence of at least
one solution of the optimal control problem is proven by using continuous depen-
dence of the solution on the material parameters. But the results are proven only for
one type of physically relevant boundary conditions. In this paper, in Section 3, we
prove the continuous dependence for other types of boundary conditions. The proof
is based on analytical inequalities presented in Section 2.
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First, let us start with the nonlinear Gao beam model, which was firstly intro-
duced in [5]. With respect to a small correction of this model which was proposed
in [9], the nonlinear Gao beam is given by the fourth order equation:

E I wIV − E α (w′)2w′′ + P (1− ν2)w′′ = f in (0, L), (1)

where

I =
2

3
t3b, α = 3 t b (1− ν2), f = (1− ν2) q.

Here, E denotes Young’s elastic modulus of the material, I is the constant area
moment of inertia, w is the deflection of the beam, 2t and b represents the thickness
and width of the beam, respectively. The Poisson’s ratio is represented by the
symbol ν, q is the applied transverse load and P stands for the constant axial force
acting at the end point of the beam x = L. We distinguish two types of acting axial
force: P > 0 and P < 0 causing a compression and a tension, respectively. The
beam model needs to be completed by one of the following boundary conditions:
(B1) simply supported beam: w(0) = w(L) = w′′(0) = w′′(L) = 0;

(B2) clamped beam: w(0) = w′(0) = w(L) = w′(L) = 0;

(B3) propped cantilever beam: w(0) = w′(0) = w(L) = w′′(L) = 0;

(B4) cantilever beam: w(0) = w′(0) = 0,

w′′(L) = E I w′′′(L)− 1
3
E α (w′(L))3 + P (1− ν2)w′(L) = 0.

The spaces of admissible displacements are denoted as Vi, i = 1, . . . , 4, and defined
by the corresponding stable boundary conditions contained in (B1),. . . ,(B4):

V1 ={v ∈ H2((0, L)) : v(0) = v(L) = 0},
V2 ={v ∈ H2((0, L)) : v(0) = v′(0) = v(L) = v′(L) = 0},
V3 ={v ∈ H2((0, L)) : v(0) = v′(0) = v(L) = 0},
V4 ={v ∈ H2((0, L)) : v(0) = v′(0) = 0},

where H2((0, L)) is the Sobolev space which consists of those square integrable func-
tions for which all generalized partial derivatives up to the order two are also square
integrable on the interval (0, L). In the following, V will be one of above V1, . . . , V4.

The variational formulation of the problem (1) reads as follows:{
Find w ∈ V such that

a(w, v) + π(w, v) = L(v), ∀v ∈ V,
(2)

where

a(w, v) =

∫ L

0

EIw′′v′′dx−
∫ L

0

P (1− ν2)w′v′dx,

π(w, v) =

∫ L

0

E t b (1− ν2)(w′)3v′dx, L(v) =

∫ L

0

(1− ν2) q v dx.
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The following theorem provides the essential assumptions to the existence of a unique
solution to problem (2), see [8].

Theorem 1. Let E, t, b be positive constants, ν ∈ (0, 0.5〉, q ∈ L2(0, L) and P < P,

where P =
1

1− ν2
PE
cr . Then the problem (2) has a unique solution.

Remark 1. Since it is not possible to find analytical expression for the critical force
for the Gao beam, we use a lower bound P which can be expressed by Euler’s critical
load PE

cr as

P =
1

1− ν2
PE
cr =

1

1− ν2

π2EI

(K · L)2
, (3)

see [4], [11]. The constant K depends on the boundary conditions as follows:

(B1) (B2) (B3) (B4)
K 1 0.5 0.7 2

.

The existence and uniqueness of a solution to (2) can be established under stronger
assumptions on physical data. In section 3 we will consider the piecewise constant
material parameters E and ν. In this case, the assumptions of Theorem 1 have to be
modified as follows: let E, ν are positive, piecewise constant functions over a finite,
fixed partition of 〈0, L〉, b, t are positive constants in 〈0, L〉 and

P < Pmin, Pmin =
π2E I

(1− ν2)(K · L)2
,

where E, ν are the minimal values of E, and ν, respectively. The proof of Theorem 1
generalized for piecewise constant material parameters can be done in a similar way
as in [8].

2. Analytical inequalities

In this section we introduce several analytical inequalities that will be used in
the next section for extension of results for the identification problem. Let us start
with Wirtinger’s inequality in its original version, see [10].

Theorem 2. Let y(x) ∈ L2(R) be a periodic function with period 2π and let y′(x) ∈
L2(R). If

∫ 2π

0
y(x) dx = 0, then the following inequality holds:∫ 2π

0

(y(x))2 dx ≤
∫ 2π

0

(y′(x))2 dx. (4)

The proof of the inequality is based on the Fourier expansions of f and f ′, see [2].
To better suit our needs, let the Theorem 2 be interpreted for f ∈ H1((0, 2π)):

if
∫ 2π

0
f(x) dx = 0, then (4) holds.
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The inequality (4) from Theorem 2 can be generalized for a function defined on
the interval 〈0, L〉. Let us assume that y(x) is a periodic function with period L and
let y′(x) ∈ L2(0, L). Substituting t = L

2π
x we obtain a modification of (4):∫ L

0

(ŷ(t))2 dt ≤
(
L

2π

)2 ∫ L

0

(ŷ′(t))2 dt, (5)

where ŷ(t) = y(x(t)) = y(2πt
L

). If we consider the nonlinear Gao beam with boundary
conditions (B2) and set y(x) = w′(x), the assumptions of (5) are satisfied and we
get: ∫ L

0

(w′(x))
2

dx ≤
(
L

2π

)2 ∫ L

0

(w′′(x))
2

dx. (6)

The following inequality is known as the Wirtinger-Poincaré-Almansi inequality,
see [7].

Theorem 3. Let y(x) be a function defined on the interval 〈0, π〉 such that y(0) =
y(π) = 0 and y′(x) ∈ L2(0, π). Then∫ π

0

(y(x))2 dx ≤
∫ π

0

(y′(x))2 dx. (7)

The inequality (7) can be generalized for a function y on 〈0, L〉. If we have
y(0) = y(L) = 0 and y′(x) ∈ L2(0, L) than∫ L

0

(y(x))2 dx ≤
(
L

π

)2 ∫ L

0

(y′(x))2 dx. (8)

Similar inequality can be defined on 〈0, L〉 for functions satisfying only a single
condition y(0) = 0, for details see [6].

The key idea is to symmetrize the problem by defining the function y(x) on
interval 〈0, 2L〉, i.e. for any x ∈ 〈L, 2L〉 we define y(x) = y(L + ξ) = y(L − ξ) =
y(2L − x), where ξ = x − L. Thus, from y(0) = y(2L), y ∈ L2(0, 2L) and (8) we
have: ∫ 2L

0

(y(x))2 dx ≤
(

2L

π

)2 ∫ 2L

0

(y′(x))2 dx .

Due to the symmetry on 〈0, 2L〉 we get:∫ L

0

(y(x))2 dx ≤
(

2L

π

)2 ∫ L

0

(y′(x))2 dx. (9)

This idea could be used for the cantilever beam, i.e. the nonlinear beam with
the boundary conditions (B4). We can symmetrize the deflection w on the inter-
val 〈0, 2L〉, by setting y(x) = w′(x) and using (9) we get:∫ L

0

(w′(x))2 dx ≤
(

2L

π

)2 ∫ L

0

(w′′(x))2 dx. (10)
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If we consider the nonlinear Gao beam with the boundary conditions (B1) we can
use the same idea as for boundary conditions (B2). The function w′ satisfies the
assumptions of Theorem 2 modified on interval 〈0, L〉, so with respect to (5) we get∫ L

0

(w′(x))2 dx ≤
(
L

2π

)2 ∫ L

0

(w′′(x))2 dx. (11)

It is obvious that∫ L

0

(w′(x))2 dx ≤
(
L

2π

)2 ∫ L

0

(w′′(x))2 dx ≤
(
L

π

)2 ∫ L

0

(w′′(x))2 dx. (12)

Using Theorem 3, its generalization (8) and (6) we get∫ L

0

(w(x))2 dx ≤
(
L

π

)2 ∫ L

0

(w′(x))2 dx ≤ 1

4

(
L

π

)4 ∫ L

0

(w′′(x))2 dx. (13)

Finally, for the propped cantilever beam, i.e. for the nonlinear beam with the bound-
ary conditions (B3), we can use the same idea as for cantilever beam which leads to
the inequality (10).

3. Identification problem - extension for other types of boundary condi-
tions

In this section we extend the results presented in [11], where the identification
of the material parameters given by the Young modulus E and Poisson ratio ν in the
Gao beam equation (1) is studied by using an optimal control approach. We suppose
that the beam is piecewise homogeneous, i.e. the parameters E, ν are piecewise
constant. For this reason let the interval (0, L) be decomposed into mutually disjoint
open intervals Ki, called material elements, i = 1, · · · , r, i.e. Ki ∩ Kj = ∅, ∀i 6= j

and 〈0, L〉 =
r⋃
i=1

K̄i. The material parameters are chosen from an admissible set Uad :

Uad = {(E, ν) ∈ (L∞(0, L))2 : 0 < Emin ≤ E ≤ Emax <∞ in (0, L),

0 < ν ≤ 0.5 in (0, L), (E, ν)|Ki
∈ (P0(Ki))

2, i = 1, . . . , r}, (14)

where Emin, Emax are given constants and P0(Ki) is the set of constant functions
on Ki. Therefore, the admissible set Uad is the closed, convex subset of couples of
piecewise constant functions on the partition of (0, L).

The variational formulation of the state problem with respect to the correspond-
ing boundary conditions (B1)–(B4), see [11], reads as follows:

For given (E, ν) ∈ Uad
find w := w(E, ν) ∈ V such that

a(w, v) + π(w, v) = L(v), ∀v ∈ V,
(P(E, ν))
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where the forms a, π and L have the same meaning as above. According to Remark 1,
to have a unique solution to the problem (P(E, ν)) for any (E, ν) ∈ Uad, let t and b
be positive constants, q ∈ L2(0, L) and

P < P̂min, where P̂min =
π2EminI

(K · L)2
≤ π2E I

(1− ν2)(K · L)2
, (15)

Emin is the lower bound of E in (14) and constant K is given in Remark 1. The
inequality (15) is obvious with respect to Theorem 1 and Remark 1.

The parameter identification problem reads as follows:
Find (E∗, ν∗) ∈ Uad, such that

J(w(E∗, ν∗)) = min
(E,ν)∈Uad

J(w(E, ν)),

where w(E, ν) solves (P(E, ν))

and J : V −→ R is a cost functional.

(P)

Continuous dependence of the solution w(E, ν) on the material parameters (E, ν) is
stated in the following theorem which was published in [11] but only for the boundary
conditions (B1) which correspond to the space V1. Here, we will present the extension
of the previous results for the remaining boundary conditions (B2), (B3) and (B4)
and the spaces V2, V3 and V4. Unless distinguished the space V will be one of above
V1, . . . , V4. In the previous section we introduced the inequalities which will be used
in a proof of the following Theorem. In case of the boundary conditions (B3) we
have to consider a stronger assumption for axial force with respect to (15) and (10).
Thus let

P < P̂ i
min, where P̂ i

min =
π2EminI

(Ki · L)2
≤ π2E I

(1− ν2)(Ki · L)2
, (16)

where Ki, i = 1, 2, 3, is given with respect to the inequalities from Section 2 and
the boundary conditions. It means that in the following we will be working under
the assumptions: let K1 = 1 for the boundary conditions (B1), K2 = 0.5 for (B2)
and K3 = 2 for the boundary conditions (B3) and (B4).

Theorem 4. Let (En, νn) ∈ Uad, n = 1, 2, . . . and (E, ν) ∈ Uad, such that

En −→
n→∞

E in L∞(0, L) and νn −→
n→∞

ν in L∞(0, L)

and wn := w(En, νn) ∈ V be the solution to (P(En, νn)). Then

wn −→
n→∞

w(E, ν) ∈ V,

and w(E, ν) solves (P(E, ν)).
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Proof. The proof consists of three steps. First, we show that the sequence {wn} is
bounded in V .
Step 1. Let wn ∈ V solve (P(En, νn)):∫ L

0

EnIw
′′
n v
′′ dx+ tb

∫ L

0

En(1− ν2
n)(w′n)3 v′ dx

−
∫ L

0

P (1− ν2
n)w′n v

′ dx =

∫ L

0

(1− ν2
n) q v dx, ∀v ∈ V.

We set v := wn and get∫ L

0
EnI(w′′n)2 dx+tb

∫ L

0
En(1−ν2

n)(w′n)4 dx−
∫ L

0
P (1−ν2

n) (w′n)2 dx =

∫ L

0
(1−ν2

n) q wn dx.

(17)

From (14) it is clear that 1− ν2
n > 0, since 0 < νn ≤ 0.5. Therefore,

tb

∫ L

0

En(1− ν2
n) (w′n)4 dx ≥ 0, ∀(En, νn) ∈ Uad. (18)

To estimate the term with the axial force P , we will apply the inequalities and
their modifications presented in Section 2 according to the boundary conditions
(B1)–(B4). It is clear that for the space V of admissible displacements H2

0 ((0, L)) ⊂
V ⊂ H2((0, L)) holds. In the following, we will use the fact that the space Hk((0, L)),
k = 1, 2, . . . , can be continuously embedded into Ck−1(〈0, L〉), see [1]. Especially, we
have

∃ c > 0: max
x∈〈0,L〉

|v′(x)| ≤ c‖v‖2 ∀v ∈ H2((0, L)),

where ‖·‖k, k = 0, 1, . . . , denotes the norm in Hk((0, L)). We will also use the
following inequality

∃ c̄ > 0: ‖v′′(x)‖2
0 ≥ c̄‖v‖2

2 ∀v ∈ V, (19)

which holds for any V defined by the boundary conditions (B1), (B2), (B3), or (B4).
For functions v from V2, V3 and V4 we have v(0) = v′(0) = 0, thus we can use twice
the generalization (9) of Theorem 3, first for y = v and then for y = v′. So we can
write ∫ L

0

(v(x))2 dx ≤
(

2L

π

)2 ∫ L

0

(v′(x))2 dx ≤
(

2L

π

)4 ∫ L

0

(v′′(x))2 dx,

which gives us the inequality (19) with c̄ =
(
π

2L

)4
. For functions from V1 the inequal-

ity (19) holds with constant c̄ = 4
(
π
L

)4
, which follows from (13).

First, we consider the simply supported beam with boundary conditions (B1).
Since 0 < νn ≤ 0.5, we have 1− ν2

n < 1 and using the inequality (12), we get that∫ L

0

P (1− ν2
n)(w′n(x))2 dx ≤

(
L

π

)2 ∫ L

0

P (w′′n(x))2 dx (20)
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holds for any P ≥ 0. Then we can write∫ L

0

En I (w′′n)2 dx+ tb

∫ L

0

En(1− ν2
n)(w′n)4 dx −

∫ L

0

P (1− ν2
n)(w′n)2 dx

≥
∫ L

0

En I(w′′n)2 dx − P

(
L

π

)2 ∫ L

0

(w′′n)2 dx

≥
∫ L

0

Emin I(w′′n)2 dx − P

(
L

π

)2 ∫ L

0

(w′′n)2 dx

= c1 ‖w′′n‖2
0 ≥ c̄ c1 ‖wn‖2

2, (21)

where we used (18), (20), (19) and the notation c1 := EminI−P
(
L
π

)2
. The constant c1

is positive due to assumption (16). If P < 0 then (21) trivially holds with c1 = EminI.
For the clamped beam with the boundary conditions (B2), i.e. w(0) = w′(0) =

w(L) = w′(L) = 0, we estimate the term with the axial force by the inequality (6)
and by using 1− ν2

n < 1. Therefore, we have∫ L

0

P (1− ν2
n)(w′n(x))2 dx ≤

(
L

2π

)2 ∫ L

0

P (w′′n(x))
2

dx. (22)

For the propped cantilever and cantilever beam with the boundary conditions (B3)
and (B4), respectively, the inequality (10) together with 1− ν2

n < 1 can be used, i.e.∫ L

0

P (1− ν2
n)(w′n(x))2 dx ≤

(
2L

π

)2 ∫ L

0

P (w′′n(x))2 dx. (23)

Similarly as for (B1) now we can get by using the inequalities (22), (23) that∫ L

0

En I (w′′n)2 dx+ tb

∫ L

0

En(1− ν2
n)(w′n)4 dx −

∫ L

0

P (1− ν2
n)(w′n)2 dx

≥ ci ‖w′′n‖2
0 ≥ c̄ ci ‖wn‖2

2, (24)

where i = 2, 3, c2 := EminI − P
(
L
2π

)2
> 0 and c3 := EminI − P

(
2L
π

)2
> 0. If P < 0

then (24) is trivially valid with c2 = c3 = EminI.
For the right hand side in (17) we get∫ L

0

(1− ν2
n)q wn dx ≤ ‖q‖L2((0,L))‖wn‖2, (25)

where Hölder’s inequality and (14) were used. Finally, from (17), (21), (24) and (25)
we see that {wn} is bounded in V. Therefore, there exists its subsequence, for sim-
plicity we denote it as {wn} again, such that

wn ⇀
n→∞

w (weakly) in V.
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Step 2. Now we show that w solves (2). Similarly as in [11], it can be proven for
each v ∈ V that∫ L

0

En I w
′′
n v
′′ dx + tb

∫ L

0

En(1− ν2
n)(w′n)3 v′ dx −

∫ L

0

P (1− ν2
n)w′n v

′ dx

=

∫ L

0

(1− ν2
n)q v dx −→

n→∞

∫ L

0

EIw′′ v′′ dx + tb

∫ L

0

E(1− ν2)(w′)3 v′ dx

−
∫ L

0

P (1− ν2)w′v′dx =

∫ L

0

(1− ν2)qv dx.

Step 3. To prove the strong convergence, it is sufficient to show that [[wn]] → [[w]]
for n→∞ in V , where

[[w]]2 :=

∫ L

0

EI(w′′(x))2 dx.

For more details, see [11], [3].

To prove the existence of at least one solution of the identification problem (P),
see [11], we suppose that the cost functional J is continuous in V , i.e.

vn −→
n→∞

v =⇒ J(vn) −→
n→∞

J(v). (26)

Theorem 5. Let Uad be given by (14) and let J satisfy (26). Then the identification
problem (P) has a solution.

4. Conclusion

In this paper, we discuss the extension of the results presented in [11]. Several
analytical inequalities and their modifications were used to prove the continuous
dependence of the solution to the state problem on the material parameters for
different types of boundary conditions for the nonlinear Gao beam.
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1. Introduction

PALM model is capable to simulate turbulent air-flow within the lowest part of
the ABL. By default, it uses the LES approach in which the bulk of the turbulent
motions is explicitly resolved [4]. The core was already validated according to tunnel
measurements in [2], therefore our expectations were high.

The realistic buildings layout from Prague-Dejvice quarter is chosen as the test-
ing domain. The choice of this particular domain is motivated by existing validation
for the PALM model in Dejvice quarter [5]. The same domain was 3D-printed and
placed to the test section of the wind tunnel in Telč (Vincenc Strouhal) owned by
ITAM which calibration is documented in [3]. To achieve the flow similar to real
ABL in reduced scale the wind tunnel used three elements of the turbulence gener-
ation - vortex spikes and castellated barrier wall before the atmospheric section and
roughness elements inside the atmospheric section (before the model test section).

Originally we were interested to model the influence of passageways inside the
buildings on the flow field in courtyards and we wanted to compare our numbers to
ones measured in the tunnel by 5-holes probe. The inconsistency in the results for
the base-case forced us to study the problem how to correctly reproduce the well
defined but still vaguely described (in a certain sense) flow field in the wind tunnel’s
atmospheric test section.

The question should be which data and in which form are needed from the mea-
surement (or calibration) for the CFD models to set the inflow properly.

2. Mathematical model

The simulated air is considered as incompressible (due to much lower velocities
in comparison to the speed of sound), viscid (the molecular viscosity is neglected
everywhere except for the turbulent dissipation) and neutrally stratified (for testing
the dynamical core only without unfavourable stratification effects) gas.

The dynamical core of PALM model is based on Navier-Stokes equations in
Boussinesq approximation for filtered quantities (filtering usually denoted with over-
bar is omitted here due to readability)

∇ · u = 0
∂u

∂t
+ (u · ∇)u = − 1

ρ0

∇π + g −∇ · τττ (1)

The velocity vector u = ui = (u, v, w) describes the movement of air which is assumed
to be dry with constant density ρ0 = 1 kg/m3. The gravitational acceleration denoted
as g = −gδi3 is acting only in vertical direction (here written using Kronecker’s delta
δij in third component), its value is set to g = 9.81 m/s2. The modified pressure
fluctuation can be expressed as π = p + 2

3
ρ0e using the pressure fluctuation p and

sub-grid-scale (sgs = unresolved) turbulent kinetic energy e. The residual stress
tensor τττ = τij symbolises the turbulent part of the flow.
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The modified Deardorff’s model is employed for turbulent closure (written in
Einstein summation convention follows)

τij = u′′i u
′′
j −

2

3
eδij = −Km

(
∂ui
∂xj

+
∂uj
∂xi

)
∂e

∂t
+ uj

∂e

∂xj
= 2Km∇2e + u′′i u

′′
j

∂ui
∂xj

− ε (2)

A double prime indicates sgs velocities, the overbar indicating filtering is added for
the sgs flux terms. The local (sgs) eddy diffusivity coefficient of momentum Km

is approximated as Km ≈ 0.1∆
√
e, where distance ∆ = min{∆xi} is minimal grid

spacing. This distance serves also as implicit filter for large eddies. The dissipation

rate is approximated as ε ≈ 0.93
√
e3

∆
. For more details please see the documentation

in [4]. Further the dimensions are referenced as xi = (x, y, z).

2.1. Numerical solver

The equations are spatially discretized by using finite differences at equidistant

Fig. 1: Arakawa stag-
gered C-grid [4]

horizontal grid spacing while the vertical grid is stretched
above the surface layer to save CPU-time. The stretching
factor applied above 100 m height set to 1.01 is limited by
maximal vertical step (max ∆z = 2∆x). Arakawa stag-
gered C-grid is used for velocity u defined at edges of the
grid cell while the scalars are defined in the grid cell cen-
ter (see Fig. 1). The Upwind-biased 5th order advection
scheme based on flux formulation according to [6] is used.

The time integration is done by 3rd order low-storage
(3 stages) Runge-Kutta method according to [1]. It
is proved that the CFL condition in such case can be
CCFL = maxi{ui}∆t

∆
< 1.4 which limits the maximal time

step ∆t.
To enforce incompressibility (divergence free velocity field needed by Bouissinesq

approx.) a predictor-corrector method is used where Poisson equation is solved for
the modified perturbation pressure (π) after every time step. The resulting system
of linear equations is solved with Gauss-Seidel method and multi-grid scheme is
employed if number of cells per core is even . The detailed description can be found
in [4].

3. Set-up and boundary conditions

As mentioned above, the measurement was done in wind tunnel at the ITAM
in Telč, detailed description can be found in [3] and mentioned references. What is
important to notice here is the arrangement of elements generating the ABL flow
before the aerodynamic test section as can be seen in the Fig. 2, because the castel-
lated barrier wall and vortex generators are not a part of the numerically modeled
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domain. Their placement to the numerical domain close to the inlet would caused
a significant extension of the domain and therefore slowing down the computations.

The real world building configuration in Prague-Dejvice between streets Ju-
goslavskych partyzanu and Terronska was chosen as testing area (serves as inner
domain in the model). The Fig. 3 shows the map of the area with blue circle indi-
cating the passage-way in the building in Rooseveltova street. The area is rotated
clockwise to adjust the air flow with x-direction. The situation in the test section
(inner domain in the model) is shown in the Fig. 4 with marked measuring point
locations.

Fig. 2: View from the aero-
dynamic test section back-
wards (against the flow).

Fig. 3: Map of chosen area.
The domain is rotated
clockwise in the model.

Fig. 4: The same area as
inner domain with measur-
ing points.

The scale of the model is 1:300 which holds for time and space meaning that
the 1 min. average in the tunnel is 5 hours average in real. A characteristic length
is chosen as the height of the vortex generator which is H = 1.5 m in the tunnel
which corresponds to 450 m in reality. The advantage of the scale setting is that the
velocities can be compared 1:1. If the reference velocity Uref = 6.6 m/s is considered,
the Reynolds number in the tunnel is Re ≈ 106 which is large enough. If Townsend’s
hypothesis applies, the flow in the wind tunnel should be dynamically comparable
to the real one. The computational domain contains all the roughness elements
(simulated directly) as can be seen in the Fig. 5. The whole domain 3000 × 600 m
large includes the test section with dimensions 600× 500 m (all listed as real here).
The resolution of the grid is set to ∆ = 1 m.

The wind tunnel measurements were performed using five-hole fast response pres-
sure probe “Cobra” with integrated pressure-to-voltage transducers. The probe was
mounted on a traversing device that could move it in all three directions x, y, z, see
Fig. 2 right. The used sampling frequency was 1000 Hz and sampling time was 60 s
for each measuring record. The probe records evaluations were made in MATLAB
with the use of routines and calibrations from the probe manufacturer, Aeroprobe
Corporation.

The wind velocity and Turbulent Intensity (TI) profiles measured by a hot-wire
above the roughness elements (before the inner domain) were available from the
validation article [3]. For this study the profiles measured before the inner domain
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Fig. 5: Computational domain with buildings in the test section (marked in red).

are important, specially profile measured at the beginning of inner domain and profile
measured approximately one meter before inner domain. The maximal height of the
profiles is 0.47H and the height of our simulation domain was chosen accordingly (the
height of the wind tunnel channel is 1.3H). The values for the profiles were taken
from wind tunnel validation measurement provided in [3] since the measurement of
these profiles during our experiment wasn’t accomplished.

3.1. Boundary conditions

The boundary conditions (b.c.) are set as follows:

On inlet the vertical velocity profile driven by Uref = 6.6 m/s is prescribed
for the first velocity component u = u(z) profile (different profiles were tested
- uniform, logarithmic and power law) with statistically created disturbances
every 60 s with amplitude ±0.25 m/s from the mean velocity. The other
components are set to v = w = 0. Homogeneous (homog.) Neumann b.c. is
prescribed for the other quantities (e, p).

On outlet a radiation b.c. [4] is used for all velocity components where a con-
stant phase velocity is considered as maximum value allowed by CFL condition.
Homog. Neumann condition is assumed for scalar quantities (e, p).

At the bottom homog. Dirichlet b.c. for velocity vector u(0) = 0 (no slip) is
used. Homog. Neumann b.c. is prescribed for the other quantities (e, p).

At the top boundary Dirichlet b.c. for the first velocity component is given
by the inlet profile as u(zmax) = maxu(z). For the other components and the
pressure perturbation the homog. Dirichlet b.c. is utilized. Homog. Neumann
condition is assumed for sgs-tke (e).

On sides the cyclic b.c. is prescribed for all quantities.

4. Results

The whole aerodynamic section (including the roughness elements in front of the
test section) of the wind tunnel was simulated and the results were compared to
the measurements. The main comparison was done for velocity components in the
given points (see Fig. 4) obtained by five-hole probe for three different heights: 3, 10
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Fig. 6: Horizontal velocity field in z = 9 m captured after 1 hour simulation
(u - instantaneous values).

and 30 m (listed as real dimensions). Nevertheless, the agreement of the velocity and
turbulent intensity profiles measured by hot-wire probe in the tunnel axes in front
of the test section was also important.

The first numerical experiment was performed with uniform inlet velocity profile
u(z) = Uref and was considered as naive attitude serving as technical preview. The
flow was decelerated and its turbulent intensity was increased within the roughness
elements section. The example of such horizontal velocity field (u) in 9 m height
captured in a moment when the simulation time hits 1 hour is shown in the Fig. 6.

The model outputs were mainly saved every 30 minutes as time averages and
then their mean over 5 hours simulation were computed. Example of such output
for velocity component u in the test section is rendered in the Fig. 7. There, one
can easily identify the influences of the buildings and their recirculation zones. Also,
the influence of the passageway is identified in the middle of the U-shaped building
which allows some air to go through. Therefore the flow behind the passageway is
faster than the flow in the surrounding area.

The hit ratio for velocity magnitudes displayed in the Fig. 8 shows the discrepancy
between model and experimental results. The values given by the model are seriously
under-predicted in most points (somewhere more than by 25% - as indicate the lower
green line). The reason probably lies in wrong velocity profile at the entrance of the

Fig. 7: 30 minutes
average for u,
in z = 9 m, t = 1 h
(In the test section).

Fig. 8: Mean velocity magni-
tudes hit.

Fig. 9: Velocity profiles at the
beginning of the test section.
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inner domain. In the Fig. 9 the vertical profiles of u velocity in the tunnel axes in
front the test section are plotted (at the distance x/H = 4.74). For illustration, two
possible theoretical profiles are plotted in the graph as well as experimental profile
at the different distance (x/H = 4.09). The profile from PALM (black line) behaves
differently than the experimental profile (Kuzn. [3]).

Fig. 10: Measuring points colored
according (upalm/uexp. − 1) · 100%

The Fig. 10 displays a situation inside the test
section for each point in height 30 m. The points
are coloured according to formula(

upalm

uexp.

− 1

)
· 100%,

which means how accurately they hit the exper-
imental value. Some patterns can be identified
in the figure, such that the velocities inside the
closed building block fit well and the values in
front of the closed building block are very under-
predicted, but the rest seems quite random. That
leads us to consideration of wrong turbulent structure in the simulation probably
caused by lacking of right tools and information how to prescribe it at the inlet (as
the results from the first experiment suggested).

Profile in the Fig. 9 reveals problems with different flow rate between simulated
and measured profiles, but this issue can be related to the wrong top boundary
condition. Or the upper boundary condition (the top of the computational domain)
is simply placed too low to satisfy fully Dirichlet b.c. (without any inflow through
upper boundary). Sadly the provided information from the validation data doesn’t
contained any velocities for higher heights (z-coordinate). Yet the data suggests
the flow rate is changed between profiles - the first profile at x/H = 4.09 contains
smaller velocities than the second one at x/H = 4.74 (at the beginning of inner
domain). Therefore the flow rate to the numerical domain from above is unknown
and it cannot be properly simulated.

The first numerical experiment at least confirmed that convergence of the model
is achieved relatively quickly. As Fig. 11 shows, the steady state in terms of kinetic
energy and resolved Turbulent Kinetic Energy (TKE) conservation is reached approx-
imately after 15 min. of the simulation. The spectral density of TKE corresponds
well to the Kolmogorov’s cascade as plotted in the graph of Fig. 12.

The comparison of Turbulent Intensity (TI) profiles in the Fig. 13 for the PALM
outputs and calibration measurement with hot-wire (in the tunnel axes ahead of the
test section) indicates the good ability of the model to capture well the empty tunnel
with roughness elements only (when the castellated barrier wall and the vortex gen-
erators weren’t present). On the other hand the fully developed profiles of turbulence
and velocity (will be described further) of the fully equipped wind tunnel (with all
three elements generating similar flow to ABL) are difficult to get from the model.
Probably they have to be prescribed as an inlet b.c. which includes the complete
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Fig. 11: Convergence for kinetic energy
and Turbulent Kinetic Energy (TKE)
conservation.

Fig. 12: Spectral density of resolved
TKE.

Fig. 13: Vertical profiles of Turbulent
Intensity at the beginning of the test
section.

Fig. 14: Velocity profile compared to
empty tunnel with roughness elements
only (cubes).

information about turbulence structure. When the dimensionless velocity profiles
are compared to the empty tunnel profiles with roughness elements (cubes) only in
the Fig. 14, they fit quite well.

Other numerical experiments were conducted with the cyclic b.c. (inlet/outlet),
different inputs (logarithmic law, power law) and with switching (ON/OFF) the tur-
bulence disturbances at the inlet, but none of them led to systematical improvement.
Even the simulation with artificial tunnel walls (by adding high buildings to sides)
was tried but the changes were in terms of percents (and not systematically).

The last numerical experiment to be mentioned here used the known velocity
profile to obtain results closer to the experiment. The power law velocity profile

u(z) = Uref

(
z

zref

)α

, (3)

with coefficient α = 0.22 and zref = 200 m, was prescribed on the inlet. The tur-
bulence on the inlet was generated by the disturbances (without synthetic turbulent
generator). As shown in Fig. 15 the profile still doesn’t match fully developed state.
The flow is decelerated near the ground much more than expected.
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Fig. 15: Velocity profiles for the sec-
ond numerical experiment. Fig. 16: Mean velocity magnitudes.

The hit ratio in that case is even worse as is indicated in the Fig. 16. However, it
is not surprising because the simulated flow entering the testing domain in this case
is much slower than the physical flow in the wind-tunnel.

5. Conclusions

A big simulation (containing circa 25×108 cells) of the whole wind-tunnel at-
mospheric section was performed by atmospheric LES model PALM and its results
were compared to the measurements. It was shown that kinetic energy conservation
is achieved relatively quickly and the calculated turbulence spectrum corresponds to
the theory. The results obtained for the ”naive” uniform initial velocity profile were
promising but not satisfying. The model was able to develop the correct profile over
the roughness elements without vortex spikes and castellated barrier wall quite well
in the case of velocity and even of turbulent intensity.

The reproduction of ABL is a challenging question even for smaller scales and
well defined condition of a wind tunnel. Based on the data provided by the validation
paper the model PALM is unable to reproduce the fully developed wind profile with
correctly generated turbulence structures. It leads to strong under-estimation of the
velocities inside the street canyon. The measurement of the main flow should be
provided much higher or the flow rate through top boundary should be known. As
is shown PALM can reproduce the boundary layer created with the roughness cubes
only. For recreation of the boundary layer produced by the other elements (vortex
spikes and castellated barrier wall) the complete recirculation zone measurements is
probably needed and the top boundary of the computing domain has to be probably
placed much higher. To conclude that the results of the model are limited with
prescription of correct turbulent structure and the known (well developed) velocity
profile. Unfortunately, such profile wasn’t provided by the experimenters and during
our numerical experiments it wasn’t found. The question, how to impose the correct
profile (even if we know it), remains for the future testing.

The future endeavors are pointed to the simulation of cyclic domain (infinite)
with smaller part serving as precursor where the correct profile could be developed.
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Also we hope that we can adopt some knowledge obtained by testing original code
provided by [2]. If it was possible we would ask for the new measurements with
the empty tunnel with roughness elements only to see whether the well defined inlet
improved our hit ratio.
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Abstract: The paper is concerned with the measurement of scalar physi-
cal quantities at nodes on the (d − 1)-dimensional unit sphere surface in the
d-dimensional Euclidean space and the spherical RBF interpolation of the data
obtained. In particular, we consider d = 3. We employ an inverse multiquadric
as the radial basis function and the corresponding trend is a polynomial of
degree 2 defined in Cartesian coordinates. We prove the existence of the in-
terpolation formula of the type considered. The formula can be useful in the
interpretation of many physical measurements. We show an example con-
cerned with the measurement of anisotropy of magnetic susceptibility having
extensive applications in geosciences and present numerical difficulties con-
nected with the high condition number of the matrix of the system defining
the interpolation.

Keywords: spherical interpolation, spherical radial basis function, trend, in-
verse multiquadric, magnetic susceptibility
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1. Introduction

The aim of this paper is to present some ways of approximating and mapping
measured physical quantities exhibiting anisotropy that can be expressed by means
of a second-order tensor. A typical example is the measurement of magnetic suscep-
tibility of rock having extensive applications in geosciences [11].

In the paper, we develop the data interpolation and approximation with the help
of spherical radial basis functions in such a case, cf. [6]. The functions appearing in
the formula are the basis functions chosen as radial functions and the trends, cf. [1].

In the laboratory determination of raw data, cf. [5], [8], [11], the rock sample
rotates in magnetic field in a set of selected directions and the data items si measured
are of the form

si = zT
i Kzi + ei, (1)
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where zi are the unit vectors in the ith direction of measurement in Cartesian coor-
dinates, K is a tensor and ei are deviations from the theoretical tensor model.

An appropriate rotation of the coordinate system can make the tensorK diagonal,

K =

 K1 0 0
0 K2 0
0 0 K3

 ,
where K1, K2, K3 are principal susceptibilities. These Cartesian coordinates are ba-
sically used for the description of the problem in what follows. We call the graphical
representation of the directional susceptibilities (1) the lemniscate surface, see Fig. 1.
The function s corresponding to (1) is taken for the trend in our considerations that
follow.

Figure 1: Lower half of the lemniscate surface with K1 = 1.8, K2 = 1.0, K3 = 0.2.
The magnitude of directional susceptibility in the ith direction zi is given by the
distance between the origin and the surface measured along the vector zi. The red
arrows indicate the direction of the first eigenvector of the susceptibility tensor.

2. Exact and smooth approximation of spherical data

Let d be the dimension of a real Euclidean space Rd. Put

Sd−1 = {x = (x1, . . . , xd) ∈ Rd |
d∑
i=1

x2
i = 1}.

Then Sd−1 is the (d − 1)-dimensional surface of unit sphere in the d-dimensional
Euclidean space.

220



Choose a positive integer N and a nonnegative integer M, N ≥ M . Given a
set X = {Xj}Nj=1 of mutually distinct nodes Xj = (Xj1, Xj2, . . . , Xjd) on Sd−1, then
a general formula for the exact spherical approximant (interpolant) v has for x ∈ Sd−1

the form

v(x) =
N∑
j=1

ajψ(g(x,Xj)) +
M∑
k=1

bkpk(x), (2)

where aj, j = 1, . . . , N, and bk, k = 1, . . . ,M, are real coefficients to be found. If
M = 0, the second sum in (2) is empty.

Further, ψ : [0, π]→ R is a continuous real function called the spherical basis func-
tion (SBF) or spherical radial basis function (SRBF). A function σ(x, y), x, y ∈ Rd,
is called radial if there exists a function τ(r), r ≥ 0, such that σ(x, y) = τ(r), where
r = ‖x− y‖ ∈ R is the Euclidean norm. The nonnegative function g is the geodesic
metric, usually g : Sd−1 × Sd−1 → [0, π], cf. [6], Section 2.3.

Finally, let Πt(Rd) be the set of all polynomials p : Rd → R with real coefficients
and of total degree less then or equal to some nonnegative integer t (called trends).
Let us formulate the exact approximation (interpolation) problem to be solved,
cf. [6], [7]. The smoothing problem will be mentioned in the end of this section.

Given a continuous real target function f : Sd−1 → R, find the spherical inter-
polant (2), i.e., a continuous function v : Sd−1 → R that satisfies the interpolation
conditions

v(Xi) = f(Xi), i = 1, . . . , N, (3)

where f(Xi) are the values measued at Xi. We use the SBF interpolation for-
mula (2) with a proper geodesic metric g, spherical radial basis function ψ, and
trends pk ∈ Πt(Rd), k = 1, . . . ,M . We confine ourselves only to real-valued func-
tions and real data in this paper to make the exposition clearer.

Let us employ the matrix notation. We substitute Xi, i = 1, . . . , N , for x in the
formula (2) to get

v(Xi) =
N∑
j=1

ajψ(g(Xi, Xj)) +
M∑
k=1

bkpk(Xi), i = 1, . . . , N, (4)

and replace the left hand parts v(Xi) of the interpolation conditions (3) with the
expressions (4).

Introduce an N ×N symmetric matrix Ψ with the entries

ψij = ψ(g(Xi, Xj)), i, j = 1, . . . , N, (5)

and an N ×M matrix P with the entries

pjk = pk(Xj), j = 1, . . . , N, k = 1, . . . ,M.

Moreover, we denote by a ∈ RN , b ∈ RM , and f ∈ RN the vectors of the unknowns
and the vector of the right hand parts f(xi) of the interpolation conditions (3).
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Note that if M > 0 then we have only N interpolation conditions (3) for N +M
interpolation coefficients aj and bk in the formula (2). Thus, we can impose M
additional linear constraints for the individual trends pk,

N∑
j=1

ajpk(Xj) =
N∑
j=1

ajpjk = 0, k = 1, . . . ,M. (6)

Now the system of linear algebraic equations to be solved for the unknown vectors
a and b consists of (3) and (6), i.e.

Ψa+ Pb = f,

PTa = 0

or [
Ψ P
PT 0

] [
a
b

]
=

[
f
0

]
. (7)

We put

Q =

[
Ψ P
PT 0

]
, (8)

which is a symmetric (N +M)× (N +M) matrix of the system (7).

We have formulated the general spherical interpolation problem. Apparently, the
problem possesses the unique solution if and only if the matrix Q of the system (7)
is nonsingular. We employ some conditions guaranteeing that Q is nonsingular. To
prove them we need two statements.

Lemma 1. ([3], Theorem 1.23) Let

A =

[
A11 A12

A21 A22

]
be a square matrix, A11 its nonsingular submatrix. Then

det[A/A11] = detA/ detA11,

where
[A/A11] = A22 − A21A

−1
11 A12

is the Schur complement of the submatrix A11 in A.

Lemma 2. ([4], Theorem 4.2.1) Let the N × N matrix A be symmetric positive
definite and the N ×M matrix Y have rank M , N ≥ M > 0. Then the M ×M
matrix Y TAY is also symmetric positive definite.

222



Theorem 1. Let the N × N principal submatrix Ψ of the (N + M) × (N + M)
matrix Q introduced in (8) be symmetric positive definite and let rank P = M . Then
the matrix Q is nonsingular.

Proof. (Cf. the proof of Theorem 1 in [9].) Let [Q/Ψ ] = −PTΨ−1P be the Schur
complement of the submatrix Ψ in Q. Then

detQ = det[Q/Ψ ] detΨ

according to Lemma 1. Further,

det[Q/Ψ ] = det(−PTΨ−1P ) 6= 0

follows for the positive definite matrix Ψ from Lemma 2 as we have assumed
rank P = M . Finally, we get detQ 6= 0, the matrix Q is nonsingular, and the
system (7) has the unique solution.

Theorem 1 holds only for Ψ positive definite. On the other hand, different assump-
tions can be imposed on the matrix Q of the system (7), e.g., positive definiteness
or conditional positive definiteness of the function ψ, see [7].

Definition 1. ([6]) A continuous function ψ : [0, π]→ R is said to be positive definite
on Sd−1 (i.e., ψ ∈ PD(Sd−1)) if the quadratic form

cTΨc =
N∑
i=1

N∑
j=1

cicjψ(g(Yi, Yj)) (9)

is positive on RN \ {0} for any finite set Y = {Yk}Nk=1 of distinct points on Sd−1.

Definition 2. ([7]) Let the span of the trends pk, k = 1, . . . ,M, be the space πt(Rd)
of polynomials in d variables of total degree t, where t is a nonnegative integer.
A continuous function ψ : [0, π] → R is said to be conditionally positive definite of
order t on Sd−1 (i.e., ψ ∈ CPDt(S

d−1)) if the quadratic form (9) is positive for any
finite set Y = {Yk}Nk=1 of distinct points on Sd−1 and scalars c1, c2, . . . , cN such that

N∑
j=1

cjp(Yj) = 0

for all p ∈ πt(Rd).

Remark 1. In Theorem 1, we use the hypothesis that the matrix Ψ is positive
definite and rank P = M . Moreover, any function ψ ∈ PD(Sd−1) can be used to
provide a unique interpolant of the form

v(x) =
N∑
j=1

ajψ(g(x,Xj)).
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However, most books and papers (see, e.g., [1], [6], [7]) employ the condition that
the spherical basis function ψ is positive definite or conditionally positive definite to
prove that the matrix Q is nonsingular (cf., e.g., [6]).

Remark 2. The simplest spherical interpolant v can be considered if we omit the
second sum in (2), i.e., we set M = 0 and employ no trends. If Ψ is symmetric
positive definite, there is no matrix P in the formulation, Q = Ψ and, instead of (7),
we get the N ×N symmetric positive definite system

Ψa = f. (10)

Apparently, the system (10) possesses the unique solution a.

Remark 3. Let us formulate the least squares smoothing problem. Keep the nota-
tion introduced. Further, let wj, j = 1, . . . , N, be positive weights chosen and put
W = diag(w1, w2, . . . , wN). In solving the data smoothing problem we employ the
least squares functional minimization. The approximant is assumed in the form

v̂(x) =
N∑
j=1

(f̂j − âj)wjψ(g(x,Xj)) +
M∑
k=1

b̂kpk(x), (11)

where âj, j = 1, . . . , N, and b̂k, k = 1, . . . ,M, are real coefficients to be found, and,
moreover, we have

v̂(Xj) = âj, j = 1, . . . , N.

If M = 0, the second sum in (11) is empty.
Now the system of linear algebraic equations to be solved for the unknown vec-

tors â and b̂ is [
ΨW + I −P
PTW 0

] [
â

b̂

]
=

[
ΨWf
PTWf

]
. (12)

No interpolation conditions are imposed. An analog of Theorem 1 concerned
with the system (12) is proved e.g. in [10], Theorem 2.

3. Magnetic susceptibility measurement

As we have mentioned in the introduction, the particular physical quantity whose
measured values are approximated by the means presented in this paper is magnetic
susceptibility. Put d = 3, then S2 is the usual two-dimensional unit sphere in the
three-dimensional space. Choose a fixed positive integer N and put M = 1. Consider
the interpolation formula (2) in the form

v(x) =
N∑
j=1

ajψ(g(x,Xj)) + bs(x), (13)

where x,Xj ∈ S2, i.e., in (7), P is a single column N -vector and b and 0 are scalars.
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The interpolation conditions (4) now read

v(Xi) =
N∑
j=1

ajψ(g(Xi, Xj)) + bs(Xi), i = 1, . . . , N. (14)

Moreover, we add a single constraint

N∑
j=1

ajs(Xj) = 0 (15)

corresponding to (6).
To define a SBF formula (13) uniquely, we have to choose a proper spherical basis

function ψ, geodesic metric g, and trend s. For x, y ∈ S2 (both x and y are unit
vectors), one usually puts

g(x, y) =
√

1− (xTy)2,

where the angle α, 0 ≤ α ≤ π, between the vectors x and y is given by

cosα = xTy. (16)

For our purposes, we consider the angle between vectors of parallel directions
to be zero regardless of their orientation. At the same time, we take into account
always the acute angle α of the vectors x, y, i.e., the range of α is [0, 1

2
π]. We now

change the formula (16) for

cosα = |xTy|, i.e. α = cos−1(|xTy|),

and use the geodesic metric

g(x, y) =
√

1− cos2 α = sinα = sin(cos−1(|xTy|)) (17)

with α acute. Thus, this geodesic metric is the function g : S2 × S2 → [0, 1
2
π].

The metric (17) does not distinguish the vectors x and −x. Therefore, in what
follows, we assume that the elements Xj of the set X are mutually distinct and,
moreover, that it is Xi 6= −Xj for every i, j = 1, . . . , N .

We have chosen the inverse multiquadric

ψ(r) =
1√

(r2 + c2)
(18)

for the spherical radial basis function, where r ∈ [0, 1
2
π] (the range of the function g)

and c is a positive shape parameter that controls tension of the interpolation surface.
Finally, we take the second degree polynomial (1),

s(z) = K1z
2
1 +K2z

2
2 +K3z

2
3 , z = (z1, z2, z3) ∈ S2, (19)

where K1, K2, K3 are proper positive constants for the trend.
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Notice that the argument of the SBF function ψ is from the interval [0, 1
2
π] since

g : S2 × S2 → [0, 1
2
π] is a geodesic metric, while the argument of the trend s is

from S2, similarly to [7].
The advantage of the formula proposed is apparent in cases when we know that

the physical field measured does not principally differ from the ideal field whose
values can be computed from some explicit formula. This description of an ideal
field is then fitted by the trend part of the formula and the contributions obtained
from the first, spherical part of the formula are only small.

Let us verify the existence of the formula (13). Since we use the inverse multi-
quadric (18) for the spherical radial basis function, we shall employ some results of [7]
and [6]. Now we can prove that the matrix Ψ corresponding to (18) is symmetric
positive definite.

Lemma 3. ([7], p. 19) The N ×N symmetric matrix Ψ with entries

ψij = (r2
ij + c2)−α,

where rij = g(Xi, Xj), c > 0, and α > 0, is symmetric positive definite.

Consider the interpolation formula (13) with the functions g, ψ, and s given by the
formulae (17), (18), and (19), respectively. Choose positive constants c, K1, K2, K3.
For the interpolation formula (13), set up the system (14) corresponding to the inter-
polation conditions (3) and the equation (15) corresponding to the constraints (6).

Theorem 2. Let the system (7) correspond to the formula (13). Let the block P in
the block matrix Q given by (8) have rank 1. Then the interpolation problem (14), (15)
has the unique solution, where the coefficients aj, j = 1, . . . , N , and b solve uniquely
the linear algebraic system (7).

Proof. According to Lemma 3, the principal submatrix Ψ of the block matrix Q of
the system (7) is positive definite. On the assumption that rank P = 1, the matrix
Q is nonsingular by Theorem 1 and the system (7) has the unique solution aj,
j = 1, . . . , N , and b.

Remark 4. P is a single column N -vector, PT = (s(X1), . . . , s(XN)). The as-
sumption of Theorem 2 that rank P = 1 is apparently fulfilled if at least one of the
entries s(Xk) is nonzero.

4. Numerical experiments. Conclusions

We present some numerical experience with the interpolation problem described
in Section 3. According to Lemma 3, the matrix Ψ with entries (5) is symmetric
positive definite and the matrix Q introduced in (8) is nonsingular when the matrix P
has rank P = 1. But the use of the lemniscate s given by (19) does not prevent a very
difficult solving the linear algebraic system (7).
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We have chosen the interpolation nodes xj on the south (lower) “hemisphere”
roughly equally. The system (7) can be easily solved for N = 15 (i.e., 15 nodes,
16 equations), but for N = 30 and higher its solution computed in double precision
is useless.

The condition number cond Q of the matrix Q of a linear algebraic system char-
acterizes in some way the accuracy one can reach when solving the system: the
higher the condition number, the more ill-conditioned system and the worse (less
accurate) the solution. For a symmetric matrix Q, the condition number cond Q
can be defined as the quotient of the largest and smallest singular value of Q, i.e.
the quotient of the largest in magnitude and smallest in magnitude eigenvalue of the
matrix Q, cf. [4].

In our computation with c ∈ [0.125, 2.000], cond Q reaches about 103 in case
of N = 15, but about 108 in case of N = 60, which thus provides no acceptable
solution. Decreasing c, we can reach a lower condition number.

We have shown sufficient conditions for the existence of SRBF interpolant and
approximant. We have considered a particular SRBF interpolation formula employ-
ing an inverse multiquadric and using a trend being a second degree polynomial (19)
in Section 3.

We have carried out numerical tests with this interpolation formula. The for-
mula performs efficiently only for a small number N of interpolation nodes Xj and
the results exhibit week dependency on the parameter c. Further research shall
provide a comparison of results obtained using various other SRBFs, e.g. direct
multiquadrics [6], thin plate splines [2], etc.
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[6] Hubbert, S., Lê Gia, Q. T., and Morton, T. M.: Spherical radial basis functions,
theory and applications. Springer, Cham, 2015.

[7] Micchelli, C. A.: Interpolation of scattered data: distance matrices and condi-
tionally positive definite functions. Constr. Approx. 2 (1986), 11–22.

[8] Nagata, T.: Rock magnetism. Maruzen, 1961.

[9] Segeth, K.: Some computational aspects of smooth approximation. Computing
95 (Suppl. 1) (2013), 695–708.

[10] Segeth, K.: Multivariate data fitting using polyharmonic splines. J. Comput.
Appl. Math. 397 (2021), 113651.

[11] Tarling, D. H. and Hrouda, F.: The magnetic anisotropy of rocks. Chapman and
Hall, London, 1993.

228



Programs and Algorithms of Numerical Mathematics 21
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Abstract: This contribution is devoted to modeling damage zones caused by
the excavation of tunnels and boreholes (EDZ zones) in connection with the
issue of deep storage of spent nuclear fuel in crystalline rocks. In particular,
elastic-plastic models with Mohr-Coulomb or Hoek-Brown yield criteria are
considered. Selected details of the numerical solution to the corresponding
problems are mentioned. Possibilities of elastic and elastic-plastic approaches
are illustrated by a numerical example.
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1. Introduction

Zones with higher stress concentrations, formation and joining of cracks of various
sizes or with V-shaped notches can be observed on tunnel walls and in their vicinity
as a consequence of excavation and other effects. Such zones are usually called as ex-
cavation damage zones (EDZ). Prediction of EDZ is important for safety assessment
in many applications. Our particular motivation is related to deep storage of spent
nuclear fuel in crystalline rocks where EDZ can simplify transport of radionuclides.
In order to predict EDZ and analyze coupled processes in these zones, various in-situ
experiments have been carried out in underground research laboratories around the
world. For example, we mention the Äspö pillar stability experiment carried out in
Sweden [1] or the Tunnel Sealing Experiment (TSX) in Canada [8].

The most important factor that causes the formation of EDZ is the initial stress
state in the rock mass. EDZ may depend on its magnitude, the ratios between the
principal stresses and on the orientation of the principal stress directions with respect
to the tunnel. EDZ also depends on the shape of the tunnel and its dimensions,
the method of excavation, mechanical properties of the rock mass or its geological
structure. EDZ can also expand after the excavation due to surrounding sites or
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thermal heating [1]. On the contrary, bentonite barriers of a deep repository [1] can
contribute to the stabilization of EDZ zones.

Mathematical modeling of EDZ can be based on continuum mechanics, fracture
mechanics or on multiscale approaches. In this contribution, we focus on the con-
tinuum models, namely on elastic and elastic-plastic models. The elastic models
are usually combined with a failure criterion to detect zones with high stress con-
centrations. Such a treatment is the simplest one and is convenient for large-scale
3D geometries. Next, one can consider elastic-plastic models where the failure cri-
terion is directly a part of the model and admissible stress fields must satisfy the
criterion. These models can be enriched with internal variables representing soft-
ening/hardening variable or damage variable. In the article [7] and related papers,
different types of damage zones were classified based on elastic-plastic models, the
so-called DISL approach.

This contribution consists of the following parts. Section 2 contains selected
details to an abstract elastic-perfectly plastic problem and its solution scheme. Sec-
tion 3 is devoted to the Mohr-Coulomb and Hoek-Brown constitutive models and
their solution. Section 4 contains a numerical example illustrating possibilities of
elastic and elastic-plastic approaches of modeling EDZ zones. Concluding remarks
can be found in Section 5.

2. Numerical scheme of the elastic-perfectly plastic model

We consider a simplified 2D geometry of the rock mass around the tunnel depicted
in Figure 1. The square domain and its subdomain without the tunnel will be denoted
as Ω̂ and Ω, respectively. We prescribe zero normal displacements on the outer
boundary ∂Ω̂ (far the from tunnel) and zero normal stress on the inner boundary Γ,

that is, u·n = 0 on ∂Ω̂ and σn = 0 on Γ, where u, σ, and n denote the displacement
field, the Cauchy stress field, and the outward unit normal vector to Ω, respectively.
We prescribe the initial stress field σ0 defined in Ω. For the sake of simplicity, we
simulate the tunnel excavation by the load history tσ0/tmax, where t ∈ [0, tmax].
Next ingredients of the elastic and elastic-plastic models are the infinitesimally small
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Figure 1: 2D geometry of the rock mass around the tunnel.
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strain tensor

ε := ε(u) =
1

2
(∇u+ (∇u)T )

and the fourth-order elastic tensor C,

Cε =
E

1 + ν

{
ν

1− 2ν
(tr ε)I + ε

}
,

C−1σ = − ν
E

(tr σ)I +
1 + ν

E
σ,

where E > 0, ν ∈ (0, 1/2) denote Young’s modulus and Poisson’s ratio, respec-
tively, I is the unit second-order tensor and tr ε = ε : I = ε11 + ε22 + ε33 is the trace
of ε.

In case of linear elasticity, we have the following constitutive (Hook’s) law between
the stress and strain tensors:

σ = Cε+ σ0 or σ = C[ε+ ε0], ε0 = C−1σ0.

Now, we introduce the elastic-perfectly plastic constitutive model, which is time-
dependent. Let εe and εp denote the elastic and plastic parts of the strain tensor
and λ is the plastic multiplier. We also define yield function f := f(σ) and plastic
potential g := g(σ) and assume that these functions are convex. Then the corre-
sponding evolution problem reads: for any t ∈ (0, tmax), find σ := σ(t), ε := ε(t),
εe := εe(t), εp := εp(t), λ := λ(t) such that

• ε = εe + εp, σ = C(εe + tε0/tmax),

• ε̇p ∈ λ̇∂g(σ), εp(0) = 0,

• λ̇ ≥ 0, λ̇f(σ) = 0, f(σ) ≤ 0.

Here, the dot symbol means the time derivative and ∂g(σ) denotes the subdifferential
of g at σ. It is worth-noticing that subdifferentials are not so obvious in engineering
practice and the plastic flow rule is usually written by the derivative of g:

ε̇p = λ̇
∂g(σ)

∂σ
,

despite the fact that g is often non-differentiable. One of the aim of our work is to
show that the knowledge of an explicit form of the set ∂g(σ) can simplify analysis
and constitutive solution for various elastic-plastic models. This was shown in [9, 10].

The elastic-plastic constitutive problem is mostly discretized by the implicit Euler
method. Consider the partition 0 = t0 < t1 < . . . < tk−1 < tk < . . . < tmax of the
time interval. Then the discretized constitutive problem at the k-th step, k = 1, 2, . . .,
has the following scheme: given ε0, εk, and εpk−1, find σk and εpk such that

σk = T (εk − εpk−1 + tkε0/tmax), εpk = εk + tkε0/tmax − C−1σk.
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Here, the tensor-valued function T needs to be constructed. In general, one can
find T only in an implicit form and construct it by an iterative procedure. This con-
struction is based on the elastic prediction – plastic correction algorithm [4, 3, 9, 10].
Within the elastic prediction, we test whether the trial stress σtr

k = C(εk − εpk−1 +
tkε0/tmax) satisfies the failure criterion f(σtr

k ) ≤ 0. If it is so then σk = σtr
k and

εpk = εpk−1. Otherwise, the plastic correction is applied to be the constraint f(σk) = 0
satisfied. So we need to return the predicted stress to the failure surface and construct
the so-called return mapping. Such a mapping can be interpreted as a generalized
projection onto a convex set. It is also worth noticing that the function T is non-
differentiable, but its semismoothness is expected and can be proven just by the
subdifferential-based treatment [9, 10].

Using the function T , the overall elastic-plastic problem in terms of displacements
reads:

find uk ∈ V :

∫
Ω

T (ε(uk)− εpk−1 + tkε0/tmax) : ε(v) dx = 0 ∀v ∈ V,

where
V = {v ∈ H1(Ω;Rd) | v · n = 0 on ∂Ω̂}

is a space of admissible displacement fields. After a space discretization, we arrive at
a system of non-linear equations. Such a system is usually solved by a non-smooth
version of the Newton method. It requires to construct a generalized derivative of T .
Its construction for specific models will be briefly discussed in the next section.

3. The Mohr-Coulomb and Hoek-Brown constitutive models

The Mohr-Coulomb and Hoek-Brown constitutive models are usual in geotech-
nics. The functions f and g for these models are defined in terms of principal
stresses. Therefore, we need to introduce the spectral decomposition of the Cauchy
stress tensor:

σ =
3∑

i=1

σiei ⊗ ei, σ1 ≥ σ2 ≥ σ3.

Here, σi ∈ R, ei ∈ R3, i = 1, 2, 3, denote the eigenvalues (principle stresses), and
the eigenvectors of σ, respectively. We assume the ordering σ1 ≥ σ2 ≥ σ3 of the
eigenvalues of σ. From now on, we shall work with a mechanical sign convention
assuming positive values for a tension. (In geomechanics, opposite sign convention
is usual.)

The Mohr-Coulomb model is defined by the functions

f(σ) = (1 + sinφ)σ1 − (1− sinφ)σ3 − 2c cosφ,

g(σ) = (1 + sinψ)σ1 − (1− sinψ)σ3,

where c > 0, φ ∈ (0, π/2) and ψ ∈ (0, π/2) are given material parameters denoting
the cohesion, the friction angle and the dilatancy angle. It is expected that ψ ≤ φ.
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The Hoek-Brown model is defined by the functions

f(σ) = σ1 − σci
(
s−mb

σ1

σci

)a
− σ3,

g(σ) = σ1 − σci
(
sg −mg

σ1

σci

)ag
− σ3,

where σci, s, sg,mb,mg > 0 and a, ag ∈ (0, 1) are given material parameters. More
details to these parameters can be found in [3, 5, 6]. Briefly speaking, they are defined
by empirical formulas containing usual material parameters for intact rock samples
and two indices, the geological strength index GSI and the disturbance index D.
GSI represents a structure of the surrounding rock mass and D characterizes a way
of the excavation. To be the model well-defined, we assume that sg/mg ≥ s/m,
although we have not found such an assumption in literature. In the limit case a =
ag = 1, one can transform the Hoek-Brown model to the Mohr-Coulomb models one.

Admissible stress fields satisfy the condition f(σ) ≤ 0. For both the models,
the corresponding set is convex and aligned with the hydrostatic axis (where σ1 =
σ2 = σ3). The Mohr-Coulomb set is a hexahedral pyramid in the space of the
principle stresses with the apex at σt = c/ tanφ. For the Hoek-Brown model, the
pyramid is curved and has the apex at σt = sσci/mb, see [3]. Next, one can see that
the function g has the following structure for both the models:

g(σ) = ĝ1(σ1)− ĝ3(σ3),

where ĝ1 and ĝ3 are increasing, convex and twice differentiable functions. By extend-
ing the results from [10], it is possible to show that such functions g are convex and
they subdifferentials satisfy

∂g(σ) =
{
ν =

3∑
i=1

νiei ⊗ ei

∣∣∣ (e1, e2, e3) ∈ V (σ);

ĝ′1(σ1) ≥ ν1 ≥ ν2 ≥ ν3 ≥ −ĝ′3(σ3);
3∑

i=1

νi = ĝ′1(σ1)− ĝ′3(σ3);

(ν1 − ĝ′1(σ1))(σ1 − σ2) = 0; (ν3 + ĝ′3(σ3))(σ2 − σ3) = 0
}
,

where ĝ′1, ĝ′3 denote the derivatives of ĝ1, ĝ3 and

V (σ) = {(e1, e2, e3) ∈ [R3]3 | ei · ej = δij; σei = σiei, i, j = 1, 2, 3; σ1 ≥ σ2 ≥ σ3}.

If σ1 > σ2 > σ3 then ν1 = ĝ′1(σ1), ν2 = 0, and ν3 = −ĝ′3(σ3), and thus g is
differentiable at σ. Otherwise, g is not differentiable at σ and ν1, ν2, ν3 are not
uniquely defined.

Let us recall that the unknown stresses tensor σ := σk satisfies f(σ) = 0 if
the plastic correction (the return mapping) occurs. In such a case, σ lies on the

233



surface of the Mohr-Coulomb or Hoek-Brown pyramid. With respect to the ordering
σ1 ≥ σ2 ≥ σ3, we split the pyramidal surface into four parts: smooth portion
(σ1 > σ2 > σ3), the left (curved) edge (σ1 = σ2 > σ3), the right (curved) edge
(σ1 > σ2 = σ3), and the apex (σ1 = σ2 = σ3 = σt). This terminology was introduced
in [4]. For each of these cases, one can specify the set ∂g(σ) and consequently, the
form of the return mapping. For example, if the return to the left edge occurs then
ĝ′1(σ1) ≥ ν1 ≥ ν2 ≥ 0, ν1 + ν2 = ĝ′1(σ1), ν3 = −ĝ′3(σ3) hold. These conditions are not
usual in engineering practice but they can simplify the construction of the return
mapping and help to find a correct return type.

In case of the elastic-perfectly plastic Mohr-Coulomb model, one can find deci-
sion criteria for each return type and even derive a close form of the constitutive
operator T , see e.g. [4, 10]. However, the function T is only in an implicit form
for the Hoek-Brown model. In [3], the following return-mapping scheme was pro-
posed. First, the return to the apex is tested. In this case, the solution must satisfy
σ1 = σ2 = σ3 = σt and it is possible to derive necessary and sufficient conditions for
this return type. If the return to the apex does not occur, the return to the smooth
portion of the yield surface is tested and the corresponding problem has to be solved
iteratively. After finding a solution candidate, we decide about its admissibility. If it
is not admissible, one can decide using this candidate whether the return to the left
or right curved edge occurs. We plan in our future work to complete this solution
concept by rigorous analysis based on the subdifferential-based treatment and show
that the operator T is well-defined.

In order to construct a generalized derivative of T , we use the so-called eigenpro-
jections and their derivatives, see [4]. For the sake of brevity, we introduce it only
for a tensor εtr with three different eigenvalues εtr1 > εtr2 > εtr3 . Then, the spectral
decomposition of εtr satisfies

εtr =
3∑

i=1

εtri e
tr
i ⊗ etri , etri ⊗ etri = Etr

i =
(εtr − εtrj I)(εtr − εtrk I)

(εtri − εtrj )(εtri − εtrk )
, i = 1, 2, 3.

We say that the second-order tensorsEtr
1 ,Etr

2 , andEtr
3 are the eigenprojections of εtr.

If we consider the eigenvalues as functions depending on εtr, then their derivatives
satisfy Dεtri (εtr) = Etr

i , i = 1, 2, 3. Next, the derivative of Etr
i is the fourth-order

tensor and can be found in the following form:

DEtr
i (εtr) := Etr

i =
D((εtr)2)− (εtrj + εtrk )I− (2εtri − εtrj − εtrk )Etr

i ⊗Etr
i

(εtri − εtrj )(εtri − εtrk )

−
(εtrj − εtrk )[Etr

j ⊗Etr
j −Etr

k ⊗Etr
k ]

(εtri − εtrj )(εtri − εtrk )
,

where i 6= j 6= k 6= i.
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Setting εtr := εk − εpk−1 + tkε0/tmax and assuming that εtr1 > εtr2 > εtr3 , one can
specify the form of the constitutive function T and its generalized derivative [10]:

σk = T
(
εtr
)

=
3∑

i=1

σi(ε
tr)Etr

i , DT
(
εtr
)

=
3∑

i=1

[
σi(ε

tr)Etr
i +Etr

i ⊗Dσi(ε
tr)
]
.

Here, σ1, σ2, σ3 are eigenvalues of the unknown stress tensor σk. They depends
on εtr. Dσi denotes a generalized derivative of σi, i = 1, 2, 3. It is necessary to use
the implicit function theorem to find these derivatives.

4. Numerical example

In this section, we compare the elastic and elastic-plastic approaches to the pre-
diction of EDZ. The comparison is illustrated on a plane strain problem inspired by
a case study of the TSX experiment performed in the depth about 500 meters in
Underground Research Laboratory in Canada, see [8].

The geometry and the finite element mesh are depicted in Figure 2. In particular,
it is considered an elliptic tunnel profile with the diameters 4.375 and 3.5 meters.
The initial stress tensor σ0 is assumed to be constant in the whole domain and its
non-zero components have the following sizes: σ0,1 = −45 MPa, σ0,2 = −11 MPa,
and σ0,3 = −60 MPa. The largest principle stress σ0,3 is aligned with the tunnel axis
and it is included to the model through the Mohr-Coulomb plastic criterion. The
remaining principle stresses are depicted in Figure 2. The excavation process took
time 17 days. So we choose tmax = 17 days and consider 17 time steps. Next, we set
E = 60 GPa, ν = 0.2, c = 17 MPa, φ = ψ = 26◦. The strength parameters c and φ
were chosen much lower than in [8] in order to highlight the difference between
the elastic and elastic-plastic approaches. We use P2 finite elements and 7-point
quadrature on each triangular element. The problems were implemented within in-
house codes in Matlab. Some of them are available for download, see [2], and their
Python’s counterparts can be downloaded from [11].
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Figure 2: The geometry and the mesh for the plane strain problem. The sizes are in
meters.
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Figure 3: Comparison of failure zones for the elastic (left) and the elastic-plastic
(right) models.

Figure 4: Comparison of horizontal stresses for the elastic (left) and the elastic-plastic
(right) models. The scales are in MPa.

The comparison of failure zones computed for the elastic and elastic-plastic mod-
els are depicted in Figure 3. The zones for the elastic model are created by such ele-
ments where the Mohr-Coulomb criterion is not satisfied. They are rounded around
the tunnel wall. In case of the elastic-plastic model, the zones represent elements
with positive plastic multiplier. They have a typical V-notch shape that can be also
observed within in-situ experiments.

In Figure 4, horizontal stresses are compared for the approaches. The elastic mo-
del admit higher stress concentrations (about 100 MPa) on the tunnel top and bottom
unlike the elastic-plastic model where these concentrations are only about 50 MPa.

Figure 5 compares the total displacement and 300 times enlarged deformed shapes.
For linear elasticity, we observe the contraction of the rock mass on the top and bot-
tom of the tunnel. On the other hand, the dilatation is visible there in case of the
elastic-plastic model. For better visualization of the contraction/dilatation, we com-
pare vertical displacements on the tunnel top in Figure 6. We see that the plastic
response is strongly nonlinear from the tenth time step leading to the dilatation.
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Figure 5: Comparison of total displacements and deformed shapes for the elastic
(left) and the elastic-plastic (right) models. The scales are in meters.

0 2 4 6 8 10 12 14 16 18
day

-6

-4

-2

0

2

ve
rt

ic
al

 d
is

pl
ac

em
en

t o
n 

th
e 

tu
nn

el
 to

p

10-4

elastic
plastic

Figure 6: Evolution of the vertical displacements (in meters) on the tunnel top.

5. Conclusion

This contribution was a brief introduction to EDZ for deep tunnels in crystalline
rocks. For prediction of EDZ, the elastic and elastic-plastic models were used. A
scheme of numerical solution of the elastic-plastic problem was introduced. A par-
ticular interest was devoted to the Mohr-Coulomb and Hoek-Brown failure criteria.
The subdifferential-based treatment to their constitutive solution was recommended.
Finally, the elastic and elastic-plastic approaches to modeling of EDZ were compared
on an illustrative numerical example.
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David Šilhánek, Michal Beneš
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Abstract: In the present contribution we discuss mathematical homoge-
nization and numerical solution of the elliptic problem describing convection-
diffusion processes in a material with fine periodic structure. Transport pro-
cesses such as heat conduction or transport of contaminants through porous
media are typically associated with convection-diffusion equations. It is well
known that the application of the classical Galerkin finite element method is in-
appropriate in this case since the discrete solution is usually globally affected
by spurious oscillations. Therefore, great care should be taken in develop-
ing stable numerical formulations. We describe a variational principle for the
convection-diffusion problem with rapidly oscillating coefficients and formulate
the corresponding homogenization results. Further, based on the variational
principle, we derive a stable numerical scheme for the corresponding homog-
enized problem. A numerical example will be solved to illustrate the overall
performance of the proposed method.

Keywords: variational principles, homogenization, Γ-convergence, convection-
diffusion equation, optimal artificial diffusion

MSC: 35B27, 35B38, 70G75, 76R05

1. Introduction

Let Ω be a bounded domain in Rd, d = 1, 2, 3. In particular, we assume that Ω
is a domain with Lipschitz boundary ∂Ω (in case d = 2, 3). Further, ΓD and ΓN are
open disjoint subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN , ΓD 6= ∅. We use the standard
function spaces W 1,2(Ω), W 1,∞(Ω), L2(Ω), L∞(Ω), L2(ΓN). These function spaces
we use are rather familiar and we omit the precise definitions, see e.g. [9] for details.
Further, define the space V by V := {v ∈ W 1,2(Ω); v = 0 on ΓD} (more precisely,
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v = 0 on ΓD means that the trace of v is vanishing on ΓD). We study the family of
boundary-value problems

−∇ ·
(
a
(x
ε

)
∇uε(x)

)
+ b

(x
ε

)
· ∇uε(x) = f(x) in Ω, (1)

uε(x) = 0 on ΓD, (2)

−n · a
(x
ε

)
∇uε(x) = αuε(x) + γN(x) on ΓN . (3)

Here, n denotes the unit exterior normal vector to the boundary ∂Ω. We assume
that the transport coefficients a and b periodically depend on a fine scale x/ε (ε > 0
being a small scalar parameter). We then let ε → 0+ and study the asymptotic
behavior of the problem. In particular, our aim is to formulate a variational prin-
ciple for (1)–(3). Note that, in general, (1) is not in a divergence form, however,
under the assumptions below, there exists a functional Iε on V whose minimizers
are solutions of (1)–(3). Then the Γ-convergence of Iε (as ε → 0+) is equivalent to
the homogenization of (1)–(3).

The following assumptions will be needed throughout the paper.

• α > 0 is a real positive parameter, fixed throughout the paper, f ∈ L2(Ω) and
γN ∈ L2(ΓN).

• a : Rd × R is given by a strictly positive and bounded function, such that

0 < a1 ≤ a(ξ) ≤ a2 < +∞ for all ξ ∈ Rd (a1, a2 = const).

• The coefficient functions are rapidly oscillating , i.e. of the form

aε(x) := a
(x
ε

)
,

bε(x) := b
(x
ε

)
for all x ∈ Ω, where the functions a, b1, . . . bd are Y -periodic in Rd with
periodicity cell

Y = {y = (y1, . . . , yd : 0 < yi < 1) for i = 1, . . . , d}

and ε is a scale parameter.

• The coefficient functions are taken to be a gradient field in the sense that

−∇ϕε(x) =
bε(x)

aε(x)

with potential ϕε.
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• The potential ϕε is a Lipschitz function, ϕε ∈ W 1,∞(Ω) such that

ϕε(x) = R0 · x+ εψ
(x
ε

)
with some R0 ∈ Rd and ψ ∈ W 1,∞(Ω) Y -periodic in Rd.

For smaller and smaller ε, the coefficients aε and bε oscillate more and more
rapidly and it is natural to study the limit of uε in (1)–(3) as ε→ 0.

2. Standard weighted residual method and the Galerkin formulation

A weak formulation of the problem is to find u ∈ V satisfying∫
Ω

aε(x)∇uε · ∇v dΩ +

∫
Ω

bε(x) · ∇uεv dΩ + α

∫
ΓN

uεv dσ

=

∫
Ω

fv dΩ +

∫
ΓN

γNv dσ

for all v ∈ V . Here dΩ denotes Lebesgue measure and dσ is the surface area measure
on the boundary ∂Ω. By Th we denote an admissible partition of Ω with mesh
size h with standard properties from the finite element theory (see e.g. [4]). Let
Vh ⊂ C(Ω) ∩ V be the standard conforming linear finite element space over Th.
A finite element formulation corresponding to the problem can be written as follows:
find uh ∈ Vh satisfying∫

Ω

aε(x)∇uεh · ∇vh dΩ +

∫
Ω

bε(x) · ∇uεh vh dΩ + α

∫
ΓN

uεhvh dσ

=

∫
Ω

fvh dΩ +

∫
ΓN

γNvh dσ (4)

for all vh ∈ Vh.
It is well-known that, as the convective term represents a nonsymmetric operator,

the standard Galerkin finite element method loses the best approximation property.
As a consequence, when the convective term is significant, the Galerkin formulation
produces node-to-node spurious oscillations. One possible way is to choose a suffi-
ciently fine grid such that the element Péclet number is less than one. However, this
approach may not always be practical from the computational point of view. There-
fore, several stabilized methods have been developed to avoid unphysical spurious
oscillations on coarse grids, see e.g. [6] and the references given there. In particular,
the authors in [11] have shown a variational basis for the optimal artificial diffu-
sion method. Following this observation, we provide a variational principle for the
problem (1)–(3) such that the solution uε minimizes a certain functional Iε over
the appropriate solution space V . Using the theory of Γ-convergence, we identify
the limit Ihom of Iε as ε goes to 0, such that the minima of Iε converge to the
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minimum of the homogenized functional Ihom. Based on the variational structure of
this problem, i.e. from the fact that the homogenized solution minimizes a certain
homogenized functional, the finite element solution possesses the best approximation
property. Namely, the finite element approximation of the homogenized solution (the
solution of the problem with the constant homogenized coefficients) gives nodally ex-
act solutions for 1D problems with constant coefficients.

3. A variational principle for the advection-diffusion problems

Define χε(x) := exp[ϕε(x)]. Then χε ∈ W 1,∞(Ω) and χε(x) ≥ c > 0 on Ω. The
function χε will be called a multiplier for this variational problem. It is easily verified
that sufficiently smooth function uε solves (1) provided

−∇ · (χε(x)aε(x)∇uε) = χε(x)f(x) in Ω.

This equation is in divergence form so there is a variational principle for its solutions.
Consider the problem of minimizing Iε on V , where Iε : V → R is defined by, w ∈ V ,

Iε(w) :=

∫
Ω

χε(x)

(
aε(x)

2
|∇w|2 − f(x)w

)
dΩ +

∫
ΓN

χε(x)
(α

2
w2 − γNw

)
dσ. (5)

Note that this functional involves the advection field solely through the multi-
plier χε(x). Using the theory in [13], there will be a minimizer of Iε. When
v ∈ V ∩ C(Ω), the first variation of Iε at uε ∈ V ,

δIε(uε, v) = lim
t→0

1

t
[Iε(uε + tv)− Iε(uε)] ,

exists and is given by

δIε(uε, v) =

∫
Ω

χε(x) (aε(x)∇uε · ∇v − f(x)v) dΩ

+

∫
ΓN

χε(x) (αuεv − γNuεv) dσ. (6)

At the minimizer uε ∈ V , (6) will be zero. Hence, we have∫
Ω

χε(x)aε(x)∇uε · ∇v dΩ +

∫
ΓN

χε(x)αuεv dσ

=

∫
Ω

χε(x)f(x)v dΩ +

∫
ΓN

χε(x)γNu
εv dσ (7)

for all v ∈ V . It is easy to see that (7) is the weak formulation for the boundary
value problem

−∇ · (χε(x)aε(x)∇uε) = χε(x)f(x) in Ω, (8)

uε(x) = 0 on ΓD, (9)

−n · aε(x)∇uε(x) = αuε(x) + γN(x) on ΓN . (10)
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A corresponding finite element formulation for the problem (8)–(10) reads as follows:
find uh ∈ Vh such that∫

Ω

χε(x)aε(x)∇uεh · ∇vh dΩ +

∫
ΓN

χε(x)αuεhvh dσ

=

∫
Ω

χε(x)f(x)vh dΩ +

∫
ΓN

χε(x)γNu
ε
hvh dσ

for all vh ∈ Vh.

4. Γ-convergence

We now consider a family of functionals (5) depending on w ∈ V . Let Ihom

denote the homogenized functional defined by

Ihom(w) :=

∫
Ω

exp(R0 · x) (Whom(∇w(x))− f(x)w(x)) dΩ

+

∫
ΓN

exp(R0 · x)
(α

2
w(x)2 − γN(x)w(x)

)
dσ, (11)

where the homogenized energy Whom is given by

Whom(λ) = inf
ξ∈W 1,2

per(Y )

∫
Y

a(y)

2
|λ+∇yξ(y)|2dY, (12)

where W 1,2
per(Y ) is the space of elements of W 1,2(Y ) having the same trace on opposite

face of Y .
Applying [10, Theorem 1.5] (see also [3, 7]), the sequence Iε Γ-converges to Ihom.

This implies the following fact on the minimizers: for each value ε > 0, let uε ∈ V
be an minimizer of the functional Iε. Then, up to a subsequence, uε converges
weakly in V to a limit u which is precisely a minimizer of the homogenized func-
tional Ihom, i.e.,

uε ⇀ u weakly in V

further

Iε(uε)→ I(u), inf
v∈V
Iε(v)→ min

v∈V
I(v) and I(u) = min

v∈V
I(v).

Computing the infima in (12) and minimizers u ∈ V of (11) yields the following
homogenized problem,∫

Ω

exp(R0 · x)A∗∇u · ∇v dΩ +

∫
ΓN

exp(R0 · x)αuv dσ

=

∫
Ω

exp(R0 · x)f(x)v dΩ +

∫
ΓN

exp(R0 · x)γNuv dσ (13)
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for all v ∈ V . The homogenized diffusion tensor is given by its entries

Aij =

∫
Y

a(y) (ei +∇ywi) (ej +∇ywj) dY, (14)

where wi are defined as the unique solutions in W 1,2
per(Y ) of the cell problems:

−∇y · (a(y)(ei +∇ywi)) = 0 in Y and

∫
Y

wi dY = 0, i = 1, . . . , d. (15)

5. Application to the 1D problem

We now study a convection-diffusion process in layered medium which is described
by the following one-dimensional problem. Let Ω = (0, 1) be an interval in R, ε > 0,
and consider the problem

− du

dx

(
aε(x)

du

dx

)
+ bε(x)

du

dx
= 1 in (0, 1) (16)

u(x = 0) = u(x = 1) = 0. (17)

Here, aε(x) = a(x/ε) and bε(x) = b(x/ε) and we assume that a and b are piecewise
constant 1-periodic functions such that

a(y) =

{
a1 y ∈ (0, 1/2)
a2 y ∈ (1/2, 1)

b(y) =

{
b1 y ∈ (0, 1/2)
b2 y ∈ (1/2, 1)

(18)

where a1, a2 ∈ R+ and b1, b2 ∈ R. In the one-dimensional case, analytical solutions
to (14)–(15) are well known, see e.g. [5]. In particular, for (18) we have

A∗ =
2a1a2

a1 + a2

and R0 = −a1b2 + a2b1

2a1a2

. (19)

Given any positive integer N , let π : 0 = x0 < · · · < xN+1 = 1 denote a uniform
partition of the unit interval with nodes xi = ih, h = 1/(N + 1), 0 ≤ i ≤ N + 1.
Then Vh denotes the set of all continuous functions defined on [0, 1] which are linear
on each subinterval [xi, xi+1], 0 ≤ i ≤ N , and which vanish at the end points.

Figure 1: Layered medium.
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A convenient basis on Vh can be constructed in a standard way as follows: let vi(x),
1 ≤ iN , be the element in Vh which satisfies vi(xj) = δij, 1 ≤ j ≥ N . Then the
collection {vi(x), 1 ≤ i ≤ N} constitutes a basis in Vh: any function vh(x) ∈ Vh can
be written as

vh(x) =
N∑
i=1

ζivi(x).

A finite element formulation corresponding to the problem (16)–(17) can be written
as follows: find uεh ∈ Vh, uεh(x) =

∑N
i=1 ξivi(x), such that (1 ≤ i ≤ N)

N∑
j=1

{∫ 1

0

aε(x)
dvi
dx

dvj
dx

dx

}
ξj +

N∑
j=1

{∫ 1

0

bε(x)vi
dvj
dx

dx

}
ξj =

∫ 1

0

vi dx. (20)

The results presented in this section are obtained using an in-house PYTHON
code. Recall that the standard Galerkin formulation gives node-to-node spurious
oscillations. In Figure 2, we compare the numerical solutions from the standard
Galerkin formulation for various steps h. As one can see from the figure, the Galerkin
formulation produces spurious node-to-node oscillations for high values of h (namely
h = 0.1 and h = 0.05).

We now apply the new variational formulation to the 1D problem according
to (13) (reformulated to the 1D case and Dirichlet boundary conditions). The
corresponding finite element formulation reads as follows: find uh ∈ Vh, uh(x) =∑N

i=1 ηivi(x), such that

N∑
j=1

{∫ 1

0

exp(R0x)A∗
dvi
dx

dvj
dx

dx

}
ηj =

∫ 1

0

exp(R0x)vi dx, 1 ≤ i ≤ N. (21)

According to a specific construction of the basis on Vh, it is easy to see that

uh(x) = ηj−1g−1(x) + ηjg0(x) + ηj+1g+1(x) on 〈xj−1, xj+1〉,

where

g−1(x) =

{
−x−xj

h
−h ≤ x− xj ≤ 0

0 0 < x− xj ≤ +h

g0(x) =

{
x−xj+h

h
−h ≤ x− xj ≤ 0

h−(x−xj)

h
0 < x− xj ≤ +h

g+1(x) =

{
0 −h ≤ x− xj ≤ 0
x−xj
h

0 < x− xj ≤ +h

Hence, in view of (21), (η1, η2, . . . , ηN) is a solution of the following system of equa-
tions

ηi−1ω−1 + ηiω0 + ηi+1ω+1 = 1, 1 ≤ i ≤ N, η0 = ηN+1 = 0,
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Figure 2: Comparison of Galerkin approximations for various steps h and fixed
ε = 0.1. The following values have been chosen in this example: a1 = 0.05,
a2 = 0.005, b1 = 0.8 and b2 = 1.2.

where

ω−1 =

∫ +h

−h exp(R0x)A∗g′0(x)g′−1(x) dx∫ +h

−h exp(R0x)g0(x) dx
=
R0A

∗

2h
(1− coth(R0h/2),

ω0 =

∫ +h

−h exp(R0x)A∗g′0(x)g′0(x) dx∫ +h

−h exp(R0x)g0(x) dx
=
R0A

∗

h
coth(R0h/2),

ω+1 =

∫ +h

−h exp(R0x)A∗g′0(x)g′+1(x) dx∫ +h

−h exp(R0x)g0(x) dx
=
−R0A

∗

2h
(1 + coth(R0h/2)).
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Figure 3: Comparison of the fine scale solutions and the homogenized results.

It is worth noting that the coefficients ω−1, ω0 and ω+1 are, respectively, the same
as obtained using the optimal artificial diffusion method, c.f. [11]. In Figure 3, we
compare the numerical solution uhom of (21) obtained using the stable homogenized
formulation with h = 0.05 (based on the variational principle, which gives nodally ex-
act solutions) with the solutions of (20) using the standard Galerkin approximations
with h = 5.0× 10−5 and for various values of scale parameters of ε.
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Abstract: We describe a numerical technique for the solution of macroscopic
traffic flow models on networks of roads. On individual roads, we consider
the standard Lighthill-Whitham-Richards model which is discretized using the
discontinuous Galerkin method along with suitable limiters. In order to solve
traffic flows on networks, we construct suitable numerical fluxes at junctions
based on preferences of the drivers. Numerical experiment comparing different
approaches is presented.

Keywords: traffic flow, discontinuous Galerkin method, junctions, numerical
flux
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1. Introduction

Let us have a road and an arbitrary number of cars. We would like to model
the movement of cars on our road. We call this model a traffic flow model. We use
macroscopic models, where we view our traffic situation as a continuum and study
the density of cars in every point of the road. This model is described by partial
differential equations.

Our aim is to numerically solve macroscopic models of traffic flow. Our unknown
is density at point x and time t. As we shall see later, the solution can be dis-
continuous. Due to the need for discontinuous approximation of density, we use
the discontinuous Galerkin method. The aim of modelling is understanding traffic
dynamics and deriving possible control mechanisms for traffic.

1.1. Macroscopic traffic flow models

We begin with the mathematical description of macroscopic vehicular traffic,
cf. [4] and [6] for details. First, we consider a single road described mathematically as
a one-dimensional interval. In the basic macroscopic models, traffic flow is described
by two basic fundamental quantities – traffic flow Q and traffic density ρ.
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In article [3], Greenshields realized that traffic flow is a function which depends
only on traffic density in homogeneous traffic. The relationship between the ρ and Q
is described by the fundamental diagram. There are many different proposals for the
traffic flow Q derived from real traffic data, cf. [4]. Here we present only Greenshields
model, which define traffic flow as Q(ρ) = vmaxρ(1− ρ

ρmax
), where vmax is the maximal

velocity and ρmax is the maximal density.
Since the number of cars is conserved, the basic governing equation is a nonlinear

first order hyperbolic partial differential equation, cf.

ρt + (Q(ρ))x = 0, x ∈ R, t > 0. (1)

Equation (1) must be supplemented by the initial condition ρ(x, 0) = ρ0(x), x ∈ R
and an inflow boundary condition.

Following [2], we consider a complex network represented by a directed graph.
Each vertex (junction) has a finite set of incoming and outgoing edges (roads). In
our case it is sufficient to study our problem only on a simple network with one
vertex J and its n incoming and m outgoing adjacent edges. On each road we
consider equation (1), while at the vertex we consider a Riemann solver.

It is also necessary to take into account the preferences of drivers how the traffic
from incoming roads is distributed to outgoing roads according to some predeter-
mined coefficients. There is a traffic–distribution matrix A describing the distribution
of traffic among outgoing roads, i.e.

A =

αn+1,1 · · · αn+1,n
...

...
...

αn+m,1 · · · αn+m,n

 , (2)

where for all i ∈ {1, . . . , n}, j ∈ {n + 1, . . . , n + m}: αj,i ∈ [0, 1] and for all
i ∈ {1, . . . , n}:

∑n+m
j=n+1 αj,i = 1. The ith column of A describes how the traffic

from the incoming road Ii distributes to the outgoing roads at J .
We denote the endpoints of road Ii as ai, bi. We introduce the notation of spatial

limits ρ
(L)
i (bi, t) := limx→bi− ρi(x, t) and ρ

(R)
i (ai, t) := limx→ai+ ρi(x, t).

Let ρ = (ρ1, . . . , ρn+m)T be a weak solution at J , see [2, Definition 5.1.8], where ρ has
bounded variation in space. Then ρ satisfies the Rankine–Hugoniot condition, which
represents the conservation of cars at J :

n∑
i=1

Q(ρ
(L)
i (bi, t)) =

n+m∑
j=n+1

Q(ρ
(R)
j (aj, t)) (3)

for almost every t > 0, cf. [2, Lemma 5.1.9].

1.2. Discontinuous Galerkin method

As an appropriate method for the numerical solution of (1), we choose the discon-
tinuous Galerkin (DG) method, which is essentially a combination of finite volume
and finite element techniques, cf. [1].
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Consider an interval Ω = (a, b). Let Th be a partition of Ω into a finite number
of intervals (elements) K = [aK , bK ]. We denote the set of all boundary points of
all elements by Fh. We seek the numerical solution in the space of discontinuous
piecewise polynomial functions Sh = {v; v|K ∈ P p(K), ∀K ∈ Th}, where p ∈ N0

and P p(K) denotes the space of all polynomials on K of degree at most p. For
a function v ∈ Sh we denote the jump in the point s ∈ Fh as [v]s = v(L)(s)− v(R)(s).

We formulate the DG method for the general first order hyperbolic problem
ut + f(u)x = g, x ∈ Ω, t ∈ (0, T ), which is supplemented by the initial and boundary
condition. The DG formulation then reads, cf. [1]: Find uh : [0, T ]→ Sh such that∫

Ω

(uh)tϕ dx−
∑
K∈Th

∫
K

f(uh)ϕx dx+
∑
s∈Fh

H(u
(L)
h , u

(R)
h ) [ϕ]s =

∫
Ω

gϕ dx,

for all ϕ ∈ Sh. On Fh we use the approximation f(uh) ≈ H(u
(L)
h , u

(R)
h ), where H is

a numerical flux. We use the Godunov numerical flux, which is defined as the flux
at the exact solution of the Riemann problem with u

(L)
i and u

(R)
i , cf. [5]. It can be

expressed as

HGod
orig

(
u(L), u(R)

)
=

{
minu(L)≤u≤u(R) f(u), if u(L) < u(R),

maxu(R)≤u≤u(L) f(u), if u(L) ≥ u(R).
(4)

For our purpose, we derive alternative form, which is inspired by maximum pos-
sible traffic flow (see Section 2) in case with one incoming and one outgoing road.

Definition 1 (Alternative form of Godunov numerical flux). Let the Greenshields
traffic flow f have global maximum at u∗. Then the Godunov numerical flux is defined
as

HGod
(
u(L), u(R)

)
= min

{
fin(u(L)), fout(u

(R))
}
, (5)

where

fin(u(L)) =

{
f(u(L)), if u(L) < u∗,

f(u∗), if u(L) ≥ u∗,
fout(u

(R)) =

{
f(u∗), if u(R) ≤ u∗,

f(u(R)), if u(R) > u∗.

Definition 1 can be interpreted as the maximum possible flow through the bound-
ary, where fin is the maximum possible inflow from the left element and fout is
maximum possible outflow to the right element. The expressions (4) and (5) are
equivalent in case of Greenshields traffic flow. For simplicity, by H(· , · ) we mean
the Godunov numerical flux in the alternative form (5) in the rest of this paper.

For time discretization of the DG method we use the explicit Euler method. As
a basis for Sh, we use Legendre polynomials. We use Gauss–Legendre quadrature to
evaluate integrals over elements. Because we calculate physical quantity, the result
must be in some interval, e.g. ρ ∈ [0, ρmax]. Thus, we use limiters in each time step
to obtain the solution in the admissible interval. Following [5], we also apply limiting
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to treat spurious oscillations near discontinuities. From the definition of limiters, the
average value of the solution doesn’t change, i.e. the number of vehicle is conserved.
Limiters are necessary in the case of an oscillating solution in a sufficiently small
neighborhood of one of the limit values.

2. Maximum possible traffic flow

Based on the traffic distribution matrix, the authors of [2] define an admissible
weak solution of (1) at the junction J as ρ = (ρ1, . . . , ρn+m)T satisfying

1) ρ is a weak solution at J such that ρ has bounded variation in space, i.e. the
Rankine–Hugoniot condition holds.

2) Q(ρ
(R)
j (aj, ·)) =

∑n
i=1 αj,iQ(ρ

(L)
i (bi, ·)), ∀j = n+ 1, . . . , n+m.

3)
∑n

i=1Q(ρ
(L)
i (bi, ·)) is a maximum subject to 1) and 2).

Assumption 1) is the conservation of cars at the junction. Assumption 2) takes into
account the prescribed preferences of drivers. Assumption 3) postulates that drivers
choose to maximize the total flux through the junction.

One problem with the approach of [2] is that explicitly constructing the fluxes
requires the solution of a Linear Programming problem on the incoming fluxes. This
is done in [2] for the purposes of constructing a Riemann solver at the junction
and in [7] for the purposes of obtaining numerical fluxes at the junction in order to
formulate the DG scheme. Closed-form solutions are provided in [7] in the special
cases n = 1, m = 2 and n = 2, m = 1 and n = 2, m = 2.

Now, we will study the case with one incoming and two outgoing roads. This
example is important for us, because it inspires us in the construction of α-inside
Godunov flux (see Section 3.2). We use the method described in [7, Section 2.2] with
our notation. In this case, we have distribution coefficient α2,1 = α and α3,1 = 1−α.
Then we calculate maximum possible inflow to the junction from incoming road as

H1(t) = min

{
fin(ρ

(L)
1 (b1, t)),

fout(ρ
(R)
2 (a2, t))

α
,
fout(ρ

(R)
3 (a3, t))

1− α

}
. (6)

The outflow from the junction to outgoing road is calculated as H1 multiplied by the
distribution coefficient, i.e. H2(t) = αH1(t) and H3(t) = (1− α)H1(t).

Remark. We can notice, that traffic congestion on one of the outgoing road influences
the traffic flow to the second outgoing road. For example, when fout(ρ

(R)
2 ) = 0, then

H1 = H2 = H3 = 0.

3. Numerical fluxes at junctions

We take a different approach from that of [7] and [2]. Our approach has the
advantage that it is simple and explicitly constructed for all junction types. We
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shall prove the basic properties of this construction and discuss the differences with
the approach of [7] and [2].

In our previous paper [6], we used Lax-Friedrichs numerical flux. When we cal-
culate traffic distribution error, it was nearly impossible to obtain distribution error
equal to zero. This phenomenon is hard to justify in cases with low traffic. That is
the reason, why we choose Godunov numerical flux. As we show later in Section 3.3,
distribution error makes much more sense and is more justified.

3.1. α-outside Godunov flux

At the junction, we consider an incoming road Ii and an outgoing road Ij. If
these roads were the only roads at the junction, i.e. if they were directly con-
nected to each other, the (numerical) flux of traffic from Ii to Ij would simply be

H
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
, where ρhi and ρhj are the DG solutions on Ii and Ij, re-

spectively. From the traffic distribution matrix, we know the ratios of the traffic flow
distribution to the outgoing roads. Thus, we take the numerical flux Hj(t) at the
left point of the outgoing road Ij, i.e. at the junction, at time t as

Hj(t) :=
n∑
i=1

αj,iH
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
, (7)

for j = n+1, . . . , n+m. The numerical flux Hj(t) can be viewed as the DG analogue

of taking the combined traffic outflow
∑n

i=1 αj,iQ
(
ρ

(L)
i (bi, t)

)
from all incoming roads

and prescribing it as the inflow of traffic to the road Ij.
Similarly, we take the numerical flux Hi(t) at the right point of the incoming

road Ii, i.e. at the junction, at time t as

Hi(t) :=
n+m∑
j=n+1

αj,iH
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
, (8)

for i = 1, . . . , n. Again, this can be viewed as an approximation of the traffic flow∑n+m
j=n+1 αj,iQ

(
ρ

(R)
j (aj, t)

)
being prescribed as the outflow of traffic from Ii.

3.2. α-inside Godunov flux

We find the main difference between maximum possible traffic flow and α-outside
Godunov flux is in the position of the distribution coefficient, cf. (6) and (8). That is
the reason, why we decide to insert distribution coefficient into Godunov numerical
flux.

Definition 2 (Godunov numerical flux with parameter). Let Greenshields traffic
flow f has global maximum at u∗. Then Godunov numerical flux with parameter is
defined as

HGod
(
u(L), u(R), α

)
= min

{
αfin(u(L)), fout(u

(R))
}
, (9)

where fin(u(L)) and fout(u
(R)) are defined as in Definition 1.
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The reason, why we put distribution coefficient in front of the fin term, is the
representation of the real supply from the incoming road. Only αj,ifin(ρ

(L)
i (bi, t))

cars per time want to go from incoming road i to outgoing road j. In case of α = 1,
the flux (9) is equivalent to the alternative form of Godunov numerical flux (5). For
simplicity, by H(· , · , · ) we mean the Godunov numerical flux with parameter in the
rest of this paper.

Now we are able to take numerical flux with α-inside Hj(t) at the left point of
the outgoing road Ij at time t as

Hj(t) :=
n∑
i=1

H
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t), αj,i

)
, (10)

for j = n + 1, . . . , n + m. Similarly, we take the numerical flux with α-inside Hi(t)
at the right point of the incoming road Ii at time t as

Hi(t) :=
n+m∑
j=n+1

H
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t), αj,i

)
, (11)

for i = 1, . . . , n.

3.3. Properties

It can be shown, that our choice of numerical fluxes conserves the number of
cars at junctions, similarly as in (3), see Theorem 1. However, this choice does not
distribute the traffic according to the traffic–distribution matrix (2) exactly, only
approximately, see Theorem 2.

Firstly, we show the discrete version of Rankine–Hugoniot condition.

Theorem 1 (Discrete Rankine–Hugoniot condition). The numerical flux at junc-
tion J satisfies the discrete version of the Rankine–Hugoniot condition (3):

n∑
i=1

Hi(t) =
n+m∑
j=n+1

Hj(t) (12)

whether

a) we use (7) and (8) with α-outside or

b) we use (10) and (11) with α-inside.

Proof. From the definition of Hi and Hj with α-outside, we immediately obtain:

n∑
i=1

Hi(t) =
n∑
i=1

n+m∑
j=n+1

αj,iH
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
=

n+m∑
j=n+1

n∑
i=1

αj,iH
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
=

n+m∑
j=n+1

Hj(t).
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Proof of the case b) is similar with the corresponding definition of Hi and Hj with
α-inside.

The second theorem is important for identifying the difference between maximum
possible traffic flow described in Section 2 and our numerical fluxes at junction.

Theorem 2 (Traffic distribution error). The numerical flux at junction satisfies

Hj(t) =
n∑
i=1

αj,iHi(t) + Ej(t) (13)

for all j = n+ 1, . . . , n+m, where

a) in case of (7) and (8) with α-outside, the error term is

Ej(t) =
n∑
i=1

n+m∑
l=n+1
l 6=j

αj,iαl,i
(
Hi,j(t)−Hi,l(t)

)
, (14)

where Hi,j(t) := H
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
.

b) in case of (10) and (11) with α-inside, the error term is

Ej(t) =
n∑
i=1

n+m∑
l=n+1
l 6=j

(αl,iHi,j(t)− αj,iHi,l(t)) , (15)

where Hi,j(t) := H
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t), αj,i

)
.

Proof. We prove only the case a). By definition (7),

Hj(t) =
n∑
i=1

αj,iHi,j(t) =
n∑
i=1

αj,iHi(t) +
n∑
i=1

αj,i
(
Hi,j(t)−Hi(t)

)
︸ ︷︷ ︸

Ej(t)

,

where Ej(t) is the error term which we will show has the form (14): by definition (8),
we have

Ej(t) =
n∑
i=1

αj,i

(
Hi,j(t)−

n+m∑
l=n+1

αl,iHi,l(t)
)

=
n∑
i=1

αj,i

n+m∑
l=n+1

αl,i
(
Hi,j(t)−Hi,l(t)

)
=

n∑
i=1

n+m∑
l=n+1
l 6=j

αj,iαl,i
(
Hi,j(t)−Hi,l(t)

)
,

since
∑n+m

l=n+1 αl,i = 1. The proof of case b) is similar.
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An artifact of our model is that sometimes we do not satisfy the traffic–distribution
coefficients exactly, cf. (13) and assumption 2) of maximum possible traffic flow (see
Section 2). This corresponds to the real situation where some cars decide to use
another road instead of staying in the traffic jam.

For the comparison of maximum possible traffic flow described by (6) and our
approach, we take a junction with one incoming and two outgoing roads. As it
was mentioned in Remark 2, if there is a traffic jam in one of the outgoing roads,
the maximum possible flow through the junction is 0, thus the whole junction is
blocked by a traffic jam in one of the outgoing roads. On the other hand, in our
approach the junction is not blocked by a traffic jam on one of the outgoing roads
and the cars can still go into the second outgoing road according to the traffic–
distribution coefficients. So our choice of numerical fluxes corresponds to modelling
turning lanes, which allow the cars to separate before the junction according to their
preferred turning direction. Since macroscopic models are intended for long (multi–
lane) roads with huge numbers of cars, our model makes sense in this situation. The
original approach from [2, 7] works for one–lane roads, where splitting of the traffic
according to preference is not possible.

Another difference is that we can use all varieties of traffic lights. The model
of [2, 7] can use only the so-called full green lights. Our approach gives us an
opportunity to change the lights for each direction separately.

4. Numerical results

We consider a simple network with one incoming road (Road 1) and two outgoing
roads (Road 2 and Road 3). The network will be closed at their endpoints (a1, b2

and b3). Thus, we can check the total number of cars, because we have neither inflow
nor outflow. We choose α2,1 = 0.75 and α3,1 = 0.25. The length of all roads is 1.
As we mention above, we use the combination of the explicit Euler method (step
size τ = 10−4) and DG method (number of elements N = 150 on each road). We
calculate the piecewise linear approximations of solutions and we use two Gaussian
quadrature points in each element. We use Greenshields model with vmax = 1 and
ρmax = 1. We have initial conditions

ρ0,1(x) =

{
0,

0.8,
ρ0,2(x) =

{
0.8,

0,
ρ0,3(x) =

{
0, x ∈ [0, 0.5],

0, x ∈ (0.5, 1],

cf. Figure 1a. There is 0.4 cars on Road 1. These cars are distributed into Road 2
(it has 0.4 cars already) and Road 3 by distribution coefficients. At the end, we can
expect 0.7 cars on Road 2 and 0.1 cars on Road 3.

We can see the results in Figure 1. Maximum possible flow is in the left column,
the numerical flux with α-outside is in the middle column and with α-inside is in the
right column. If we compare inflow to the Road 3 in Figure 1b between Maximum
possible flow and our numerical flux (doesn’t depend on the position of α), we can
see that our numerical flux allows more inflow. If we look at inflow to the Road 2, see
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Figures 1b and 1c, we observe similar inflow of maximum possible flow and numerical
flux with α-inside. However, the inflow in case of numerical flux with α-outside is
slightly smaller. In general, the numerical flux with α-inside is the combination of
the two other approaches. It allows as much as possible cars go to the Road 2 like
the maximum possible flow do. On the other hand, some drivers change their minds
and choose Road 3 instead of Road 2 due to the congestion on Road 2, same as in
the case of numerical flux with α-outside.

The final results are in Figure 1d. Maximum possible traffic flow has 0.7 cars on
Road 2 and 0.1 on Road 3. Numerical flux with α-outside has 0.6936 cars on Road 2
and 0.1064 on Road 3. Numerical flux with α-inside has 0.6938 cars on Road 2
and 0.1062 on Road 3.
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(d) t = 3.

Figure 1: Comparison of network with Road 1, Road 2 and Road 3
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We choose this congested example due to the demonstration of distribution error
from Theorem 2. In the non–congested cases, the traffic distribution error is zero.

5. Conclusion

We have demonstrated the numerical solution of macroscopic traffic flow models
using the discontinuous Galerkin method. For traffic networks, we construct special
numerical fluxes at the junctions. The use of DG methods on networks is not stan-
dard. We have described the differences between our approach and the paper [7] by
Čanić, Piccoli, Qiu and Ren, where the maximum possible flow at the junction is
used.
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Abstract: This paper focuses on mathematical modeling and finite element
simulation of fluid-structure interaction problems. A simplified problem of two-
dimensional incompressible fluid flow interacting with a rigid structure, whose
motion is described with one degree of freedom, is considered. The problem
is mathematically described and numerically approximated using the finite
element method. Two possibilities, namely Taylor-Hood and Scott-Vogelius
elements are presented and implemented. Finally, numerical results of the flow
around the cylinder are shown and compared with the reference data.

Keywords: finite element method, FSI problem, ALE method, Taylor-Hood
element, Scott-Vogelius element

MSC: 65N15, 65M15, 65F08

1. Introduction

The numerical approximations of the fluid-structure interaction play an impor-
tant role in many areas of science and engineering, such as the flutter of aircraft
wings, flow around wind turbine blades and hydrodynamics compressors. Although
in this contribution simpler case of incompressible fluid flow is considered, there are
a lot of numerical difficulties to be addressed as treatment of the incompressibility
constraint, treatment of the nonlinear convective term, dominating convective term,
etc., see e.g. [13], [12], [2]. Moreover, the time change of the computational fluid
domain needs to be included. Here we use the well-known arbitrary Lagrangian-
Eulerian (ALE) method due to it straightforward manner.

This paper focuses on the finite element method approximation of the Navier-
Stokes equations. There are many available strategies, see e.g. [7], [6], but we will
further deal only with finite elements which satisfy the Babuška-Brezzi (BB) inf-
sup condition. The fulfillment of BB condition guarantees stability of the numerical
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scheme, for an overview of such elements, see [7]. Here, we compare two of them. The
first one is the well-known Taylor-Hood (TH) finite element (continuous piecewise
quadratic velocities and continuous piecewise linear pressures) which satisfies the inf-
sup condition only discretely. The second element is the Scott-Vogelius (SV) finite
element, i.e. continuous piecewise quadratic velocities and discontinuous piecewise
linear pressures, see [3], [6]. In order to satisfy the BB condition, the finite ele-
ment (FE) approximation space is constructed over a barycentric refinement of an
admissible triangulation, see [4]. By choosing this element, the divergence constraint
on each element of the mesh is strongly guaranteed, see [6]. This provides us better
theoretical convergence of the method.

This paper presents the numerical realization and comparison of numerical results
for both TH and SV finite elements by using an in-house solver written in C language.
The benchmark problem of nonstationary flow around the vibrating cylinder is chosen
and the numerical results are compared with the reference data [1].

2. Governing equation

The mathematical model that describes the fluid-structure interaction consists
of movement of the rigid structure (i.e. described by ordinary differential equations)
and incompressible Navier-Stokes equations in the Eulerian-Lagrangian (ALE) for-
mulation.

2.1. Incompressible fluid flow

Let us assume a computation fluid domain Ωt ⊂ R2 to be bounded and polygonal
at any time t ∈ (0, T ). Furthermore, its boundary ∂Ω is assumed to be continuous
Lipschitz boundary formed of three disjoint parts ΓD, ΓO and ΓWt (i.e. ∂Ω = ΓD ∪
ΓO ∪ ΓWt). Flow in the domain Ωt is described by incompressible Navier-Stokes
equations in the ALE formulation. The ALE method is based on ALE mapping At
which maps the reference domain configuration Ω0 into the actual domain Ωt

At : Ωref → Ωt, X 7→ x(X, t) = At(X), x ∈ Ωref , t ∈ (0, T ).

The ALE mapping is chosen in order to map reference position of the interface ΓW0

into ΓWt whose position is defined by the motion of the cylinder, and the positions
of boundaries ΓD and ΓO are static and they are not dependent on time, for more
information see [13].

The Navier-Stokes equations in the ALE formulation for unknown velocity u(x, t) :
Ωt → R2 with components u = (u, v)T and the kinematic pressure p(x, t) : Ωt → R
read

DA

Dt
u + [(u−w) ·∇]u− ν∆u + ∇p = 0 in Ωt, t ∈ (0, T ], (1)

∇ · u = 0 in Ωt, t ∈ (0, T ],
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where DA

Dt
is the ALE derivative, w = ∂At/∂t is the domain velocity, see [13] and ν

means the kinematic viscosity. We consider the following boundary conditions

u(x, t) = g(x, t) on ΓD × (0, T ], (2)

u(x, t) = w(x, t) on ΓWt , t ∈ (0, T ], (3)

−(p− pref)n + ν
∂u

∂n
= 0 on ΓO × (0, T ], (4)

where n is the unit outward normal vector to ∂Ω and pref is a reference pressure value
at the outlet. Condition (2) is used at the inlet. Furthermore, on the surface of the
cylinder, the continuity of velocities is prescribed between the cylinder motion and
the airflow. At the outlet, there is the condition (4) which is the so-called do-nothing
condition, for more information see [5]. Furthermore, the equations are supplied by
an initial condition

u(x, 0) = u0(x) in Ω0.

2.2. Motion of cylinder

We consider the motion of the rigid cylinder with one degree of freedom. This
means that the cylinder can move only in vertical directions, as in [1]. Its motion is
described using the nondimensionless displacement Y governed by

Ÿ +

(
4πξ

Ur

)
Ẏ +

(
4π2

U2
r

)
Y =

Cl
2M∗ , (5)

where Ÿ , Ẏ are the vertical acceleration and velocity of the rigid cylinder, ξ means
the structural damping ratio, Ur = U∞

fD
represents the reduced velocity of the cylinder

(where f denotes the natural frequency of the cylinder) and M∗ is the reduced mass
of the rigid cylinder (M∗ = m

ρD2 ). The lift coefficient Cl is computed by

Cl =
2

ρU2
∞bD

Fl,

where b is the depth of the cylinder, U∞ means free velocity, ρ expresses the density
and Fl is the lift force acting on the cylinder of diameter D.

3. Numerical approximation of the Navier-Stokes equations

In order to approximate the problem (1), we start with time discretization. Here,
the equidistant division tn = n∆t of the time interval (0, T ) is employed with a con-
stant time step ∆t > 0. Further, the velocity approximations at time step tn ∈ (0, T ]
are denoted by

un(x) ≈ u(x, tn) for x ∈ Ωtn ,

and similarly the pressure approximations are denoted as

pn(x) ≈ p(x, tn) for x ∈ Ωtn .
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The domain velocity is at the time instant tn+1 approximated by wn+1(x) ≈ w(x, tn+1).
The ALE derivative is approximated by implicit Euler (BDF) and we get

un+1 − ũn

∆t
+ ((un+1 −wn+1) ·∇)un+1 − ν∆un+1 + ∇pn+1 = 0, (6)

∇ · un+1 = 0,

where by ũn we denote the velocity from time level tn defined in Ωtn transformed
to Ωtn+1 , that is ũi := ui ◦ Ati ◦ A−1

tn+1
. Equations (6) are equipped with boundary

conditions (2–4).

3.1. Space discretization

For the discretization of problem (6) by using the finite element method, a weak
formulation of problem (6) is introduced. First, assuming the fixed time instant tn+1,
the simplified notation u := un+1, w := wn+1, p := pn+1 and Ω := Ωtn+1 are
considered. Then we define the velocity test space V and the pressure test space Q as

V =
{
ϕ ∈ H1(Ω) : ϕ(x) = 0 ∀x ∈ ΓD ∪ ΓW

}
,

Q = L2(Ω),

where H1(Ω) = [H1(Ω)]2 is the vector Sobolev space and L2(Ω) is the Lebesgue
space, see [10].

Now, we take a function v ∈ V , multiply first of equations (6) and take an
arbitrary q ∈ Q, multiply second of equations (6) by it, integrate over the domain Ω
and apply Green’s theorem to the pressure gradient (∇p) and the viscous term
(−ν∆u). Further, the boundary conditions are used. Then the weak formulation
reads: Find u ∈ g + V and p ∈ Q such that the equations

1

∆t
(u,v)Ω + ν(∇u,∇v)Ωc(u−w,u,v)− (p,∇ · v)Ω =

1

∆t
(ũn,v)Ω, (7)

(∇ · u, q)Ω = 0, (8)

hold for any v ∈ V and q ∈ Q. In these equations, (u,v)Ω =
∫

Ω
u · vdx means

the scalar product in L2(Ω) and c(u,v, z) denotes the trilinear form. This form is
defined by c(u,v, z) =

∫
Ω

((u ·∇)v) ·zdx for any u,v, z ∈ V , for more details see [7].
For the reason of using the finite element method, we define an admissible tri-

angulation τh of the domain Ω, see [4]. Now, we assume that the finite element
subspaces Vh ⊂ V and Qh ⊂ Q are approximations of the spaces V and Q defined
over the triangulation τh. These spaces are formed by piecewise polynomial func-
tions. The discrete problem of problem (7) is as follows: Find uh ∈ gh + Vh and
ph ∈ Qh such that equations

1

∆t
(uh,vh)Ω + ν(∇uh,∇vh)Ω + c(uh −wh,uh,vh)− (ph,∇ · vh)Ω =

1

∆t
(ũnh,vh)Ω,

(∇ · uh, qh)Ω = 0, (9)
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hold for any vh ∈ Vh and qh ∈ Qh. To guarantee stability of the scheme, the
couple Vh, Qh should satisfy the BB condition, see [7]. In this paper, the well-
known Taylor-Hood element and Scott-Vogelius element are used.

Taylor-Hood (P2/P1) finite element uses quadratic velocities and linear pressures,
i.e. the spaces are defined by

Vh =
{
ϕ ∈ C(Ω) : (ϕ

∣∣
K
∈ P2(K), ∀K ∈ τh)

}
∩ V ,

Qh =
{
ϕ ∈ C(Ω) : (ϕ

∣∣
K
∈ P1(K),∀K ∈ τh)

}
. (10)

Velocity and pressure functions are continuous in the domain Ω, however, the element
satisfies the continuity equation only discretely. This is the reason why we use the
Scott-Vogelius P2/P

disc
1 element, which strongly guarantees divergence-free velocity

on each element, see [3].
It has the same space Vh (10) for velocity as TH element, whereas for the pres-

sure ph the linear but discontinuous functions are used, i.e.

Qdisc
h =

{
ϕ : Ω→ R : (ϕ

∣∣
K
∈ P1(K), ∀K ∈ τh)

}
.

In order to satisfy the BB condition, element is constructed over the barycentric
refined mesh created from the given regular mesh, see [3]. For both cases the velocity
and the pressure can be solved together as both couples satisfy BB condition.

So, the base Φ1, . . . ,ΦNu of the space Vh, where Nu = dim(Vh) is chosen. In
addition, a base of the pressure space Qh is defined by θ1, . . . , θNp ∈ Qh, where
Np = dim(Qh). The approximation of the velocity uh can be expressed as a combi-
nation of the basis functions of the space Vh

uh =
Nu∑
j=1

αjΦj. (11)

and approximation of pressure ph as a linear combination of the base of space Qh

ph =

Np∑
j=1

βjθj. (12)

Equations (11) and (12) are now used in equations (9). Also, the test functions vh
and qh in equation (9) are expressed as vh = Φi, for i = 1, . . . , Nu and qh = θi, for
i = 1, . . . , Np. Then the system of nonlinear equations is obtained(

1
∆t

M + A(α) B
−BT 0

)(
α
β

)
=

(
f + 1

∆t
Mũnh

0

)
, (13)

where M denotes the mass matrix (which depends on the mesh, so it is different
in each time step due to ALE formulation), A(α) represents discretization of the
nonlinear convective and the viscous terms, B corresponds to the discrete gradient

263



and BT is the discrete divergence operator. Equations (13) is a system of nonlinear
equations which is further to be linearized before it can be solved, see e.g. [9]. In
this article the linearization is taken from previous time instant

c(un+1
h ,un+1

h ,vn+1
h ) ≈ c(unh,u

n+1
h ,vn+1

h ).

Due to this linearization, there is a restriction on the choice of the time step, for more
information see [9]. The linearized system of equations can be solved by some itera-
tive methods e.g. GMRES, see [8] or a direct solver such as UMFPACK, MUMPS,
MKL, see [11].

4. Numerical results

The benchmark problem of the flow around a movable cylinder [1] is regarded.
The numerical results obtained by TH and SV elements are compared to each other
and to the reference data. For the numerical solution of the cylinder motion given
by equation (5), the Runge-Kutta method of 4th order was used.

The domain Ωt is shown in Fig. 1 in its initial state. The cylinder has a radius
r = 0.5 and its center is located at [x, y] = [19, 20]. The Dirichlet boundary condition
is prescribed (g = (1, 0)) at the inlet ΓD,1 and at the wall ΓD,2 zero velocity is
given. At the cylinder surface ΓWt is used Dirichlet boundary condition of the form
u = w. The problem is solved on meshes which are different for each considered
finite element. Due to the discontinuity of the SV element, the number of unknowns
is much higher than for the TH element. In order to compare both elements, meshes
providing a similar number of unknowns are used. The first mesh A for TH leads
to solving a system with 89519 unknowns, whereas the use of second mesh B for the
SV element results to the system of 90798 unknowns for the SV element.

40D Γ ΓD,2
OD,1

Γ
20D

w

60D
19D

D

Γ

t

Figure 1: Fluid domain Ωref of the considered benchmark of flow around a movable
cylinder, represented by interface ΓWt . Boundary ΓD consists of two parts ΓD,1 and
ΓD,2, where ΓD,1 represents inlet and ΓD,2 represents walls.
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Figure 2: Velocity magnitude ||u||2 (in the upper part) and the pressure p (in the
lower part), for Re = 150 and Ur = 3 obtained by TH element.

The configuration of the problem is characterized by Reynolds number

Re =
U∞D

ν
, (14)

where the free stream velocity is U∞ = 1 and ν expresses the kinematic viscosity. This
setup provides us the same Re = 150 as the reference data [1]. The computations
were done for several cases of different values of natural frequencies of the cylinder
(realized by different values of Ur), in all cases the zero damping ratio is considered
(ξ = 0) and reduced mass as M∗ = 2, as in [1].

In Fig. 2, the velocity magnitude and pressure field is shown. The Von Karman
vortex street is created behind the cylinder and the oscillations of the aerodynamic
forces appear leading to the oscillations of the cylinder. For this case of Ur = 3, the
SV and TH results are almost identical, see Fig. 3a). Further, it can be observed that
if the frequency of Von Karman vortex street differs from the natural frequency of the
cylinder, there is no resonance. On the other hand for the vortex shadding frequency
close to the natural frequency of the cylinder the amplitudes of coefficients Cl, Cd and
the amplitude of cylinder vibration are six times higher than for the previous case.
Moreover, the peaks of the amplitudes occur in the same time. This phenomenon
is called resonance. The resuts obtained by the SV element has slightly higher
amplitudes of the displacement than the TH element.

The dependence of amplitude of cylinder oscilation on reduced velocity Ur ∈ [3, 8]
are shown in Fig. 4. The interval where we can see the resonance is the same as in
the reference data [1] for both FE discretizations (i.e. Ur ∈ [4, 7]). The maximum
amplitude is obtained for the case of Ur = 4. Then the amplitude decreases with
increasing Ur, and finally for the case Ur = 8 there is no resonance.
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Figure 3: Comparison of lift CL coefficient (line with empty circle), drag CD coef-
ficient (line with full square) and position Y/D (line with empty square) over time
solved by TH element (full line) and SV element (dashed line) for a) Reynolds number
Re = 150, Ur = 3 and b) Reynolds number Re = 150, Ur = 4.

5. Conclusion

In this article, the numerical approximation of the interaction of incompressible
fluid flow with a movable rigid cylinder is performed. For the fluid flow description
the incompressible Navier-Stokes equations in the ALE formulation is used and non-
dimensional equation of cylinder motion is utilized. The coupled variables approach
is chosen where the Taylor-Hood P2/P1 element and the Scott-Vogelius P2/P

disc
1

element are compared on the benchmark of movable cylinder in cross-flow, see [1].

The obtained numerical results agree well with the reference data, especially in
the resonance occurrence for the considered interval of cylinder reduced velocity. As
the maximum amplitudes obtained by the TH and SV elements are practically the
same, it shows that the SV element performs well in this case in full agreement with
the TH element, which can be considered here as the reference choice.

Although the SV element theoretically provides better results for the considered
benchmark test, with similar number of unknowns the TH element has comparable
results. The further advantages of the SV element is expected for higher Reynolds
numbers, on what we will focus in our future work.
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Acknowledgements
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Abstract: The analysis of dynamic contacts / impacts of several deformable
bodies belongs to both theoretically and computationally complicated prob-
lems, because of the presence of unpleasant nonlinearities and of the need
of effective contact detection. This paper sketches how such difficulties can
be overcome, at least for a model problem with several elastic bodies, using
i) the explicit time-discretization scheme and ii) the finite element technique
adopted to contact evaluations together with iii) the distributed computing
platform. These considerations are supported by the references to useful gen-
eralizations, motivated by significant engineering applications. Illustrative ex-
amples demonstrate this approach on structures assembled from a finite num-
ber of shells.

Keywords: contact of elastic bodies, finite element method, finite difference
method, distributed computing
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1. Introduction

Reliable computational prediction of the behaviour of deformable bodies under
mechanical, thermal, etc. loads belongs to the priorities of both civil and mechanical
engineering, due to the development of advanced materials, structures and technolo-
gies, whose traditional analysis, coming from long-time experience, certified labo-
ratory measurements and heuristic computational formulae, is not available. Such
computational prediction should come from the numerical analysis of initial and
boundary value problems for systems of partial differential equations of evolution,
based on the principles of classical thermomechanics by [3], namely in the form
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of conservation of such scalar quantities as mass, (linear and angular) momentum
components and energy, supplied by appropriate constitutive relations, whose pa-
rameters have to be identified by experiments. A significant task is the modelling
and simulation of the rapid movement of several bodies with potential contacts and
impacts, accompanied by their deformation: in addition to the incorporation of var-
ious geometrical and physical nonlinearities, the design of an effective algorithm
needs e. g. some results from the graph theory and the distributed and parallel
computing.

After these motivational comments (Section 1) we intend to present a model
problem of multiple contacts / impacts of elastic (or viscoelastic) deformable bodies.
The overview of physical and mathematical background (Section 2) will be followed
by some details of the computational approach (Section 2), with special attention to
the advanced search for potential contacts, using a distributed computing platform
(Section 3). This will be demonstrated on two illustrative examples (Section 4) and
supplied by brief concluding remarks with future research priorities (Section 5).

2. Physical and mathematical background

As a first model problem, let us consider a deformable body occupying a single
domain Ω in the Euclidean space R3, supplied by a fixed Cartesian coordinate sys-
tem x = (x1, x2, x3) for simplicity, with the Lipschitz boundary ∂Ω, decomposed to
disjoint parts Θ (for homogeneous Dirichlet boundary conditions) and Γ (for Neu-
mann boundary conditions, inhomogeneous in general). The deformation of Ω will
be analyzed on a finite time interval I = [0, T ], T being a positive constant, i. e. for
any time t ∈ I. For any appropriate function φ we shall write φ,i instead of ∂φ/∂xi
with i ∈ {1, 2, 3} and φ̇ instead of ∂φ/∂t for brevity. The unit (formally outward)
normal vector ν = (ν1, ν2, ν3) can be constructed (almost everywhere) on ∂Ω. The
standard notation of Lebesgue, Sobolev, Bochner - Sobolev, etc. function spaces fol-
lowing [24, Parts 1 and 7], will be applied here. The basic unknown variable u(x, t),
working with x ∈ Ω and t ∈ I, introduced as the displacement of x ∈ Ω, with
possible extensions to Θ and Γ, in time t ∈ I related to the initial configuration
at t = 0, can be considered as an element of Lp(I, V ), with its first time deriva-
tive belonging to the same space and the second one (at least) to L2(I, V ∗). Here
V = {w ∈ W 1,p(Ω)3 : w = o on Θ} incorporates all body supports, V ∗ means the
dual to V , o denotes the zero vector from R3 and p, q ∈ [2,∞) are some fixed expo-
nents; satisfying 1/p + 1/q = 1 (for all linearized formulations always p = q = 2).
Let us notice that for any w ∈ V we have (at least) w ∈ L6(Ω)3, thanks to the
Sobolev embedding theorem. Let us also introduce X = Lq(Ω)3 and Z = Lq(Γ)3. To
avoid technical difficulties, we shall make use of the results of [21, Parts 1.2 and 6.7],
for elliptic (purely static) problems, referring to their natural generalization to hy-
perbolic (general dynamic) problems, thanks to the properties of Rothe sequences
by [24, Part 7]. All detailed derivations must be left to the curious reader, due to
the limited extent of this paper.
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Let the pair of Cauchy initial conditions u(0, .) = o and u̇(0, .) = û be introduced
on Ω, û ∈ V being some prescribed initial displacement rate. Let also the body forces
f ∈ Lq(I, X) and the surface forces g ∈ CL(I, Z) be given a priori, CL referring to
Lipschitz continuous functions on I (to avoid the difficulties with the properties of
traces from V on ∂Ω). Let i, j, k ∈ {1, 2, 3} be the Einstein summation indices. Then
the weak formulation of the conservation of linear momentum reads

(wi, ρüi) + (wk,i, τik + ατ̇ik) = (wi, fi) + 〈wi, gi〉 (1)

on I for any test function (virtual displacement) w ∈ V , However, the Piola stress
tensor τ ∈ Lq(Ω)3×3 in (1) is still undefined and must be evaluated from an ap-
propriate constitutive relation. Most frequently such relation uses the stress - strain
dependence between the symmetric Kirchhoff stress tensor σ (its symmetry can be
justified from the conservation of angular momentum, under the usual assumptions
on Boltzmann continuum) introduced as τik = σij(δkj + uk,j), with the help of the
Kronecker symbol δ, and the Almansi strain tensor εik(u) = (ui,k + uk,i + uj,iuj,k)/2.
Moreover, for appropriate functions ϕ and ϕ̃, (ϕ, ϕ̃) in (1) means the Lebesgue in-
tegral of ϕϕ̃ over Ω and 〈ϕ, ϕ̃〉 the similar Hausdorff integral over Γ; for p = q = 2
we can identify (ϕi, ϕ̃i) and 〈ϕi, ϕ̃i〉 just with scalar products on X and Z. In (1)
new positive material characteristics occur: ρ ∈ L∞(Ω) is the material density and
α ∈ L∞(Ω) introduces the structural damping factor, taking certain energy dissipa-
tion into account (because no closed physical systems occur in real applications).

The crucial choice for the practical implementation of (1) is the evaluation of σ
from ε. Here we shall present only the empirical Hooke law for the isotropic case

σij = ∂Ψ(ε)/∂εij , Ψ(ε) = λ1ε
2
kk/2 + λ2εijεij , (2)

containing just two positive Lamé factors λ1, λ2 ∈ L∞(Ω) (or the Young modulus
and the Poisson coefficient, derivable from them easily). Admitting the material
anisotropy, most of our considerations with a generalized stored-energy function Ψ
could be repeated, but with the duty to work with (up to) 21 independent material
characteristics on Ω instead of two Lamé factors; the same can be valid even for
a wider class of Ψ, introduced carefully, as discussed by [4]. Clearly the positive
values of α on Ω in (1) upgrade this formulation to the parallel viscoelastic Kelvin
model.

Unfortunately, the full procedure of verification of the existence and unique-
ness of u satisfying (1) including (2), due to both Cauchy initial conditions, is not
straightforward. For the time steps t = sh with s ∈ {1, . . . ,m}, h = T/m, with the
aim m → ∞ in all convergence considerations, we are allowed to search for some
us ∈ V instead of the unknown u(., sh) understanding τ(us) as the approximation
of τ(u(., sh)) by (2). Replacing u̇ and ü by the first and second relative differences
Dus = (us−us−1)/h and D2us = (Dus−Dus−1)/h, (1) can be rewritten in the form

(wi, ρD2uis) + (wk,i, τiks + αDτiks) = (wi, fis) + 〈wi, gis〉 (3)
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for any w ∈ V again; fis and gis can be taken e. g. as the Clément quasi-interpolations
of the components of f and g by [24, Part 7], together with u0 = o and u−1 = −hû.
Thus we come, step by step, to some particular nonlinear elliptic equations, which
should be solved iteratively, generating several types of Rothe sequences constructed
i) as linear Lagrange splines on I using the values uis and ii) as simple (piecewise
constant) abstract functions using the same values, and iii) as time-retarded modifi-
cations of i) and ii) (to cover semi-linearization in iterative processes), whose conver-
gence to u in a reasonable sense can be expected. However, the theoretical analysis of
these equations needs some assumptions on polyconvexity (or quasiconvexity, etc.)
for Ψ on Ω, together with the guarantee of mutual impenetrability of parts of Γ,
which must be seen as nontrivial problems beyond the scope of this paper. Since all
Rothe sequences i), ii), iii) are defined in infinite-dimensional function spaces, a finite
element (or similar) technique is needed for most numerical evaluations.

As a second model problem, let us consider Ω as a union of a finite number of
deformable bodies, whose frictionless contact is allowed now. Therefore three parts
of ∂Ω must be distinguished in any time t ∈ I, namely Θ, Γ and Λ where Λ ⊂ Γ
refers to all internal, adaptively activated interfaces; the lower index ∗ will identify
the integration over Λ (instead of Γ), the square brackets will be used for interface
jumps of function values on Λ. Consequently (1) gets the form

(wi, ρüi) + (wk,i, τik + ατ̇ik) = (wi, fi) + 〈wi, gi〉+ 〈[wiνi], T 〉∗ (4)

on I for any v ∈ V , containing the interface tractions T ∈ Lq(Λ)3 (not prescribed
explicitly) replacing gi on Γ by gi + T νi on Λ where [uiνi] = 0 is required. The
activation and deactivation of Λ can be explained as the conversion of (4) to certain
variational inequality of the Hertz - Signorini - Moreau type, as demonstrated by [33].
In some more details: in practical calculations, working with uν = uiνi, we need
[uiνi] T ≤ 0 for all potential contacts (including both Λ and some adjacent parts
of Γ) where always i) [uν ] = 0 and T ≤ 0 (on Λ) or ii) T = 0 and [uν ] ≤ 0
(outside Λ).

Following still [33], such formulation can be handled without the application
of explicit inequalities, using the penalty approach. This approach admits some
(sufficiently small) impacts, characterized by a positive part of [uν ]+, suppressed
by an artificial stiffness K → ∞ (constant frequently), occurring in one additional
constitutive equation τ = K[uν ]+. However, namely the searching for potential
couples for all evaluations [uν ] in arbitrary time t ∈ I can be seen as a serious
numerical problem, exceeding the set of usual numerical methods for the analysis of
differential equations, tending to the implementation of an appropriated distributed
computing platform. Nevertheless, repeating the approach for a first model problem
formally, (2) can be applied without any change and (3) has to be enriched by one
right-hand-side additive term 〈[wisνi], Ts〉∗ only.
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3. Computational approach

Unfortunately the computational algorithm induced by the generalized version
of (1) (including its above sketched generalization), applied to the study of conver-
gence of Rothe sequences successfully, is not optimal for practical calculations. Thus
we will sketch the derivation of a simple (nearly) explicit concurrent algorithm, up to
the evaluation in certain finite-dimensional space. First, let us notice the unpleasant
evaluations of sufficiently large discretized approximate values of u related to the
reference configuration of Ω at t = 0; in this case the simple remedy is some adaptive
setting of a new reference configuration after certain number of time steps, using
some a posteriori estimates, relevant for the time development of Ω. The following
task is then the full discretization of (1). For simplicity, as usual in the finite element
method, let us consider some (at least weakly) regular decomposition of Ω to finite
elements, using a set of n basis functions (with a small compact support, as derived
e. g. from linear 3-dimensional Lagrange splines) {φ1, . . . , φn} from an n-dimensional
space V n approximating V (in particular, for conforming finite elements, from such
subspace of V ). We shall use the notation D for a norm of such decomposition,
e. g. that introduced as the largest diameter of a ball containing all applied finite
elements, too; D→ 0 with n→∞ is expected.

Let us try to express u(., t) at t = sh by (3), using one more Einstein summation
index r ∈ {1, . . . , n} in its form uis = Uirsφr where i ∈ {1, 2, 3} and s ∈ {1, . . . ,m}
such that Uirs are, for simplicity, just the values approximating ui(xr, sh) in some
selected points xr from Ω and Γ (including Λ); thus φr = 1 for x = xr, being zero-
valued in all remaining cases. Thus the test functions are allowed to be wj = Wjrφr
where j ∈ {1, 2, 3}, just with one non-zero value Wjr equal to 1. As the result we
can compose the explicit time integration scheme, inspired by [11], in the form of
a system of 3n seemingly linear algebraic equations

MAs = h2Fs + (h2/D)Gs + (h2/D)G̃s([Us]))− (h/D2)C(V×s )− (h2/D2)K(Us) , (5)

for s ∈ {0, 1, . . . ,m} supplied by the auxiliary formulae

Vs+1/2 = Vs−1/2 + hAs , Vs = (Vs−1/2 + Vs+1/2)/2, Us+1 = Us + hVs+1/2 (6)

(for s = m without the last one) where M is a positive definite real symmetric
sparse matrix of order 3n (or even a diagonal one, using the well-known lumped
mass trick, working with the replacement of {φ1, . . . , φn} by simple functions where
no differentiation is needed). All other symbols (except h and D) in (5) and (6)
refer to vectors from R3n: As, Vs and Us approximate ü(., sh), u̇(., sh) and u(., sh),

C(.), K(.), Fs, Gs and G̃s(.) are known a priori, V×s ≈ Vs should be predicted as
V×s = Vs−1/2 + h(Vs−1/2 − Vs−1)/2 for the first guess and corrected by iterations (if
needed), U0 is zero-valued, V0 can be set using v̂(xr), V1/2 = V0 + hA0/2 (to avoid
undefined V−1/2 in the second formula of (6)).

In numerous papers written by engineers all considerations start with some dis-
crete formulae like (5) and (6), continuing with their various modifications and al-
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ternatives, which leads to the risk of misunderstanding with the language of math-
ematicians. Namely the common form of (5) is MAs = F Is + FEs + FCs where, as
inherited from Section 2, according to the full discretization above, MAs (as the
complete left-hand side of (5)) represents the inertia forces, F Is the internal forces,
expressed by the fourth and fifth right-hand-side additive terms of (5), FEs the ex-
ternal forces, expressed by its first and second additive terms, and FCs the contact
forces, expressed by its third additive term, whose effective evaluation is the most
delicate task. The following blocks of comments are motivated by the experience
with the development of the prototype of the computational tool for the effective
simulation of multiple contact of deformable bodies, applicable e. g. to crash testing
in the automotive industry.

General approach. Our numerical approach should ensure all computations re-
gardless of their environment, i. e. in sequential, parallel or hybrid manner, on a com-
puter network. Each cluster node, considered in the hybrid form of computation, as
suggested by [23], can be represented by some single workstation, which processes
computation of a set of associated macro-entities; it can comprise a multi-core CPU
capable of executing computational instructions in a fully parallel form. All compu-
tational procedures are activated within a global time loop. These computing cluster
nodes are called worker nodes. The parallel and hybrid types of computations re-
quire the synchronization of CPU threads between individual dependent parts of
the computation on each worker node. The synchronization is performed by means
of barriers, supplied by some supportive processes. This mainly concerns the func-
tionality focused on data exchange with the central server (master node) used in the
hybrid type of computation compatible with [22] and [8]. The procedures themselves
are called from another thread, focused purely on communication within the in scope
of a computer network.

Contact analysis. The computational platform is assumed to deal with the node-
to-segment type of contact in the sense of [33]. Due to its generality, the algorithm
should be applicable to all finite elements of a model to find all finite element (FE)
nodes suspected from the penetration of a finite element. A naive way to perform
contact detection, checking each body against all other ones, ignoring any available
information about the distribution of particular bodies in R3, has the very expen-
sive time complexity O(N 2), N being the number of items in a dataset. A more
suitable is offered by the nearest neighbour (NN) search, following [26]. The core of
such algorithm is defined as a collection of N objects (FE element nodes); this builds
a data structure which provides objects (FEs, their nodes, etc.) in the time as fast as
possible, based on the NN query. Two levels of such analysis can be distinguished:
i) search for penetration between bounding box volumes encapsulating individual
macro-entities, and ii) search for contacts betweens FE nodes and individual FEs,
using the node-to-segment approach. Even i) separately (as presented in both ex-
amples of Section 4) provides underlying support for the analysis of Macro Entity
Interaction Multi-graph (MEIM, see lower) regarding the data redistribution within
a computer cluster. The kd-tree data structure, utilized e. g. for machine learning
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and for composition of graphical (gaming) engines, is able to provide an algorithmic
support for both i) and ii).

Nearest neighbour search. Let us consider a given set Sp of points p in some
high-dimensional real space. Our aim is to construct, to any query point q, a data
structure able to find the point in Sp closest to q. Such NN problem belongs to
a larger class of proximity problems investigated in computational geometry. Geo-
metric range-searching data structures are constructed by subdividing R3 into several
regions with some predefined properties and recursive generation of a data structure
for each such region. Range queries are answered with such a data structure by
performing a depth-first search through the resulting recursive space partition. Such
data structure is created only once, until the development of situation (as of the
FE-based approximate solutions by (5)) does not force its dynamical changes; this
algorithm can be useful also for the MEIM analysis. The data structure used here
is the k-dimensional tree (kd-tree), designed by [1] as a powerful extension of one-
dimensional trees, i. e. the binary tree where the underlying space is partitioned using
the value of just one attribute at each level of the tree, instead of all d attributes,
unlike the quad-tree, introduced by [27], making such d-tests at each level. The basic
analysis of kd-trees can be found in [20]; for its development see [25] and [32]. To
compare other multi-dimensional data structures for spatial databases, cf. [19] for
R-trees and their mutations, [2] and [14] for X-trees and their mutations and [36]
for PH-tree.

Range search. An algorithm working with the kd-tree data structure consist i) of
the assembly of a kd-tree map from the appropriate set Sp and ii) of its subsequent
usage to obtain a set of nodes falling within the searching range query of any ex-
amined node belonging to an appropriate FE. Since the above sketched approach
to contact detection can include the topology of the discretized model for the ex-
plicit time integration using (5) with (6), no algorithm for deletion of nodes or tree
balancing algorithm are needed in i). In ii) we can traverse the kd-tree, but visit
only nodes whose region is intersected by the query rectangle. If a region is fully
contained in the query rectangle, we can report all the points stored in its sub-tree.
When the traversal reaches a leaf, we have to check whether the point stored at the
leaf is contained in the query region and, if so, report it.

Explicit integration scheme. Only one special type of FEs will be presented here
for simplicity of numerical simulation of a massive impact process, namely the flat
shell finite element with co-rotated coordinates of the Reissner - Mindlin type with
linear fields for rotations and transverse deflections, developed by [29]. It is very
effective in an explicit integration due to a smaller number of operations required
for numerical integration (single quadrature point). Their geometrically non-linear
behaviour was analyzed in [11] and [34] in details; its rate of convergence is ap-
proximately of quadratic order. The concrete form of explicit integration of FE
forces F Is , FEs and FCs for s ∈ {1, . . . ,m}, as required by (5), depends on the imple-
mentation of nonlinearities of various types; namely the approach of [34] expects the
large rotational kinematics in the small strain regime. Such procedure is performed
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by each hardware computational thread of a multi-core CPU; a specific number of
FEs is assigned to each thread to optimize the thread load.

Distributed and parallel analysis. Two levels occur in the explicit FE analysis:
i) standard process of both parallel integration of all FEs and explicit evaluation
of (5), working with parallel integration of internal, external and contact forces,
mapping FE ranges on the individual cores of a multi-core CPU, ii) parallel process-
ing of MEIM on computer cluster, representing a distributed computational process
able to run on a computer cluster within a cloud environment or some VPN (Virtual
Private Network). The TCP/IP protocols enable the interprocess communication
within clusters, with difficulties related to the CAP theorem (Consistency, Availabil-
ity, Partition tolerance) by [5]; for its improvements cf. [6] and [35]. The data dis-
tribution for numerical computations is based on the domain decomposition (DD).
From this class of methods we need to adopt the FE tearing and interconnecting
(FETI), suggested by [10] and developed by [9], [17], [7] and [16] to (5) and (6);
for many references (482 items) to particular variants of DD see [30], especially [30,
Part 6.3] for the one-level FETI, [30, Part 6.4] for the dual-primal FETI ana [30,
Part 8.5] for their applications to elasticity.

Advantages and drawbacks. In our approach each separate discretized domain is
able to interact with its surroundings through the contact forces. All domains that
come to contact then must be solved together within one worker node in a com-
puter cluster. A large number of moving domains is represented by MEIM, whose
edges are related to particular contacts. Such movement of domains is controlled,
following [12], by the autonomous character of Lagrangians; this can control even
the whole process of data distribution across the computer cluster. Nevertheless, the
distributed applications, sketched here, suffer from a number of issues that need to
be resolved gradually to reach an optimal model. Serious problems are: i) random
application freezing, ii) model data migration between individual worker nodes in
a computer cluster at runtime (input structural data, serialized contents of variables),
iii) type of transferred data (unstructured vs. structured protocol) and iv) merging
of data from individual worker nodes to get the final view on simulation results.

4. Illustrative example

The example presents the announced results for two benchmark problems, refer-
ring to the first and second model problem in Section 2. These results were obtained
from the in-house software at BUT for the type of shells introduced in Section 3.

Fig. 1 shows the time development of contacts / impacts of elastic shells in selected
time steps: i) for 1 big sphere falling to 1 fixed plane rectangle (3 upper graphs) and
ii) for 10 small spheres thrown to 3 moving plane rectangles (3 lower graphs).

5. Conclusions

The aim of this paper was to show the possibility of effective computational anal-
ysis of contacts / impacts of deformable bodies for selected model problems, referring
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Figure 1: Example of time development of contacts / impacts of some elastic shells.

to still unclosed problems both in mathematical theory and in information science,
too. Numerous improvements are required in distributed applications, as summa-
rized at the end of Section 3. The upgrade of the explicit calculation scheme, coming
from (5) with (6), could be inspired by the recent analyses of [13], [15] and [18].

For real engineering applications the next research step should be the careful
revision of physical formulations in the scope of classical thermomechanics, together
with the analysis of related mathematical and numerical problems, namely the proper
study of energy dissipation on contacts, independently introduced by [28] and [31].
Such dissipation can be accompanied by the formation of plastic or microscopic
damage zones, followed by the initiation and development of macroscopic cracks and
further phenomena, dangerous for the bearing ability and durability of materials and
structures.
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1 Institute of Mathematics, Czech Academy of Sciences
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Abstract: The contribution deals with the remeshing procedure between two
computational finite element meshes. The remeshing represented by the in-
terpolation of an approximate solution onto a new mesh is needed in many
applications like e.g. in aeroacoustics, here we are particularly interested in
the numerical flow simulation of a gradual channel collapse connected with
a severe deterioration of the computational mesh quality.
Since the classical Lagrangian projection from one mesh to another is a dissi-
pative method not respecting conservation laws, a conservative interpolation
method introducing constraints is described. The constraints have form of
Lagrange multipliers enforcing conservation of desired flow quantities, like e.g.
total fluid mass, flow kinetic energy or flow potential energy. Then the in-
terpolation problem turns into an error minimization problem, such that the
resulting quantities of proposed interpolation satisfy these physical properties
while staying as close as possible to the results of Lagrangian interpolation in
the L2 norm. The proposed interpolation scheme does not impose any restric-
tions on mesh generation process and it has a relatively low computational
cost. The implementation details are discussed and test cases are shown.

Keywords: interpolation, Lagrange multiplier, Lagrange projection
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1. Introduction

Interpolation is one of the basic mathematical problems and therefore there are
plenty of available methods. Here we consider an interpolation procedure between
two 2D computational finite element meshes involved during the remeshing step.
This is a typical task in engineering simulations of cutting, forging, casting, welding,
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(see e.g. [1]), where material is processed and reshaped, or in multiphysics simula-
tions like geophysics, aeroacoustics or fluid-structure interaction (FSI), see e.g. [7].
Particularly, motivation for this paper is provided by the FSI problem of flow-induced
vibrations of vocal folds studied in [9, 8]. The implemented ALE method during large
vibrations was not able to provide a computational flow mesh of sufficient quality
and thus the remeshing is needed, see [9].

As the base of the available interpolation methods the scattered data interpo-
lations can be regarded. Such approaches are realized in many packages as e.g.
Matlab, SciPy. Another possibility available also for higher dimensional cases and
unstructed grids is the use of the radial basis function approach, see e.g. [6]. Fur-
ther, there are methods specially suited for ALE methods, see e.g. [4]. However,
they are designed for meshes with the same topology based on the computation of
the local fluxes. Another approach is represented by so called supermesh approach,
see e.g. [2], where a superior mesh given by mesh intersections is constructed what
results in a high computational cost albeit it guarantees a L2 accurate projection.
More computationally favourable approach of [1] replaces supermesh approach used
together with Galerkin projection by an approximate evaluation of involved integrals,
where a relative lack of precise intersection information should be compensated by
increase of number of quadrature points. Nevertheless the most suitable method for
our purpose is the idea of [5] to combine a cheap interpolation with supplementary
restrictions typically chosen such that conservation of quantities from the physical
nature of investigated problem is required. Let us call this approach as interpolation
with restrictions or Codina & Pont interpolation (CPI). This method has a great
advantage of satisfying physical laws (in global meaning) what is a typical disadvan-
tage of other methods which results do not respect physical laws. Disadvantage is
that restrictions, i.e. conservation of selected quantities, are not valid locally.

Thus we will further deal only with the interpolation with restrictions, see [5],
and we will focus on behaviour of this method near domain boundaries. Our aim
is to improve CPI by using further information from boundaries, i.e. we assume
that new target FE mesh occupies the same space as the old donor FE mesh and
further that the vertex locations of the old and the new mesh on the mesh boundaries
are identical. This assumption is motivated by implementation of our in-house FSI
solver, [9, 8]. Then two methods of boundaries values treatment are compared and
the interpolation error for case of small highly distorted domain contrary to case of
larger domain with smaller distortion is calculated (motivated by different settings
during construction of ALE mapping).

The structure of the paper is following. First the interpolation with restrictions
is described and applied for the case of fluid flow. Further the implementaion details
are presented. Finally the errors of different interpolation settings are analyzed and
summarized in conclusion.
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2. Interpolation with restrictions

In the whole paper we consider two triangulations T o and T n of the same bounded
physical domain Ω of R2, see Figure 1, which moreover satisfy that their boundary
vertices are identical. Here, T o is called the old (donor) mesh and T n is the new
(target) mesh. By Vo

h and Vn
h the corresponding FE spaces constructed over the

triangulations T o and T n are denoted, respectively. Further, we denote a FE function
from FE space Vo

h constructed over the FE mesh T o by uo
h, i.e. uo

h(x) =
∑

j U
o
j ψ

o
j (x),

where ψo
j (x) are basis functions of the FE space Vo

h and Uo
j are corresponding nodal

values. Similarly, a function from Vn
h can be written as un

h(x) =
∑

k U
n
k ψ

n
k(x) ∈ Vn

h .

Figure 1: Illustration of interpolation from old to new FE mesh, [5].

2.1. Key idea of the method

The general procedure of interpolation with restrictions, see [5], is based on two
steps. During the first step a function uo

h ∈ Vo
h defined on the old mesh T o is

projected on the new mesh. The commonly used projections are either Lagrange
or Galerkin projections, [5]. The first one, the Lagrange projection, is based on the
evaluation of the values Un

A given by

Un
A = un

h(Xn
A) =

∑
j

Uo
j ψ

o
j (Xn

A), (1)

where Xn
A denotes the coordinates of the point associated with the nodal value Un

A.
In the second (Galerkin) case, the L2 projection is applied leading to the integral
identity ∫

Ω

un
h ψ

n dx =

∫
Ω

uo
h ψ

n dx ∀ψn ∈ Vn
h . (2)

In order to precisely fulfill (2) one needs to compute elements intersections. Such
a procedure can be computationally demanding and requires additional techniques
to be applied as e.g. supermesh approach used in [2]. High computational costs
of the Galerkin approach can be reportedly reduced by using numerical quadrature
of high orders, see [1]. As this phenomenon was not observed for the considered
numerical tests, the use of the Lagrangian interpolation is preferred.
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As one of the biggest interpolation problems is the violation of physical nature
of interpolated variable, see e.g. [4], in the second step appropriate restrictions are
applied as a correction step of the projection. The idea of imposing additional re-
strictions with the help of Lagrangian multipliers is a key how to conserve quantities
of the interest (in global sense). The presented two steps of the CPI algorithm is gen-
eral and it can be potentially used in many different scenarios, [5]. The disadvantage
of CPI is that local conservation of desired quantities is not guaranteed.

2.2. Application to fluid flow problem

The previous general concept is now applied for incompressible fluid flow problem
with the constant density ρ. In this context we will use following notation: vo ∈
Vo

h = Vo
h × Vo

h for the given velocity defined on the old mesh T o, ṽn = Πhv
o ∈ Vn

h

for the Lagrangian projection of vo on the new mesh T n and vn for the sought
interpolation with restrictions on the target mesh T n. The interpolation procedure
is now described.

Based on the nature of the problem we impose conservation of the following
quantities: 1) mass (through the conservation of the velocity divergence), 2) linear
momenta and 3) kinetic energy. This leads to the following four restrictions:

1)

∫
Ω

∇ · vo dx =

∫
Ω

∇ · vn dx, 2)

∫
Ω

ρvo · ei dx =

∫
Ω

ρvn · ei dx, i = {1, 2},

3)
1

2

∫
Ω

ρ|vo|2 dx =
1

2

∫
Ω

ρ|vn|2 dx, (3)

where vectors ei denotes standard basis. In what follows we set ρ = 1.

Then the problem of interpolation with restrictions reads: For the given velocity
vo ∈ Vo

h find

[vn,λ] = arg inf
un∈Vn

h

sup
µ∈R4

L(un,µ), (4)

where µ are Lagrangian multipliers and L(un,µ) is Lagrangian function defined as

L(un,µ) =
1

2

∫
Ω

(∑
k

(Un
k − Ũn

k )ψn
k

)2

dx− µ1

∫
Ω

∇ ·

(∑
k

Un
k ψ

n
k −

∑
j

Uo
j ψ

o
j

)
dx

−
2∑

l=1

µl

∫
Ω

(∑
k

Un
k ψ

n
k −

∑
j

Uo
j ψ

o
j

)
· el dx

− µ4

2

∫
Ω

(∑
k

Un
k ψ

n
k

)2

−

(∑
j

Uo
j ψ

o
j

)2

dx. (5)
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The differentiation of the function L with respect to all unknowns Un
i yields∫

Ω

∑
k

Un
kψ

n
kψ

n
i dx− µ1

∫
Ω

∇ ·ψn
i dx−

2∑
l=1

µl

∫
Ω

ψn
i dx

− µ4

∫
Ω

∑
k

Un
kψ

n
kψ

n
i dx =

∫
Ω

∑
k

Ũn
kψ

n
kψ

n
i dx, (6)

and by the differentiation of L with respect to µi together with the condition given
by Eq. (4) we get∫

Ω

∇ ·

(∑
k

Un
k ψ

n
k

)
dx =

∫
Ω

∇ ·

(∑
j

Uo
j ψ

o
j

)
dx,

∫
Ω

(∑
k

Un
k ψ

n
k · el

)
dx =

∫
Ω

(∑
j

Uo
j ψ

o
j · el

)
dx, l = {1, 2},

∫
Ω

(∑
k

Un
k ψ

n
k

)2

dx =

∫
Ω

(∑
j

Uo
j ψ

o
j

)2

dx. (7)

Previous equations written in the matrix notation reads
Mn −R1 −R2 −R3 −MnUn

RT
1 0 0 0 0

RT
2 0 0 0 0

RT
3 0 0 0 0

(MnUn)T 0 0 0 0




Un

µ1

µ2

µ3

µ4

 =


MnŨn

Ro
1U

o

Ro
2U

o

Ro
3U

o

(Uo)T MoUo

 , (8)

where Mn denotes mass matrix with components mn
ij =

∫
Ω
ψn

jψ
n
i dx, Mo is the mass

matrix defined on the old mesh T o and vectors R1, R2, R3 are given componentwise by

(R1)i =

∫
Ω

∇ ·ψn
i dx, (R2)i =

∫
Ω

ψn
i · e1 dx, (R3)i =

∫
Ω

ψn
i · e2 dx. (9)

Vectors Ro
i , i ∈ {1, 2, 3} are defined similarly on the old mesh. Since problem (8) is

nonlinear the Newton-Rhapson method is used for its numerical solution, see [5].

Pressure. The same concept is also used for the interpolation of the pressure
obtained by the solution of the Navier-Stokes equations. In this case only the con-
servation of its L2 norm is considered.

3. Implementation

Although problem (8) has a saddle point structure the most computationally
demanding part is the computation of the Lagrange projection. It is due to the
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Figure 2: Illustration of Lagrange interpolation from the old FE mesh T o (blue) to
the new FE mesh T n (green) with its vertices plotted in black colour. The filled
blue triangles highlight the area, from which the final value in vertices A and B are
computed.

necessity to find locations of the vertices Xn
k from T n in terms of the old mesh T o in

order to evaluate ψo(Xn
k ) in Eq. (1). The way towards it is to determine at which

triangles from T o points Xn
k lie and to find their barycentric coordinates inside these

triangles, see Fig. 2. Then evaluation of Eq. (1) is straightforward.
There are more possible methods how to find such locations. In the work of [5]

the octree parallel algorithm was employed, another possibility offers advancing front
techniques, see e.g. [3]. Nevertheless here we adopted the procedure based on the
computation of barycentric coordinates as it is implemented in software Octave. The
algorithm is following: First prepare the list X of vertices Xn

k of T n. Then in a loop
over all triangles T o

i ∈ T o determine which points from the list X lie in T o
i :

1. Compute the barycentric coordinates αj, βj, γj for each Xn
j ∈ X by solving 3x3

matrix system with M right hand vectors, where M is the length of list X .

2. If 0 ≤ αj, βj, γj ≤ 1 and αj +βj + γj = 1 then point Xn
j belongs to triangle T o

i .
Save its barycentric coordinates and shorten list X .

Complexity of this approach is almost quadratic, on the other hand this procedure
can be well parallelized. Further, a division of list X in short sub-list based e.g. on
conditions x ≷ x0, y ≷ 0 can speed up the algorithm.

4. Numerical simulations

Two tests of the interpolation with restrictions are performed.

4.1. First interpolation test – question of boundary values

The modified interpolation test of [1, 5] shows how an additional information from
the boundary can improve the interpolation results. Let have a divergence-free func-
tion F(x, y) with the components f1(x, y) = 2x2(x− 1)2y(y − 1)(2y − 1), f2(x, y) =
−2y2(y− 1)2x(x− 1)(2x− 1) and the donor and the target triangular meshes of the
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domain 〈0, 1.1〉2 with identical vertices at the boundary. Both meshes has the charac-
teristic length h = 0.033 and the inner vertices of the target mesh are shifted by h/2
to the right. In total 20 pairs of interpolations between these meshes are performed
and four different interpolation variants are compared. The first two are the classical
Lagrange projection (LAG) and the interpolation with restrictions (CPI). Further
two are the CPI modifications: by CPI m the variant, where the known values at
boundary vertices are eliminated from the final matrix system (8), is denoted. The
CPI bv denotes the CPI variant, where the results of system (8) are at the positions
related to the boundary vertices overwritten by the known values.

Figure 3 shows the velocity magnitude after all 20 interpolation runs from the
original to the target mesh and back. It is evident that the Lagrange projection
performs badly and it is too diffusive. The results of the interpolations CPI m,
CPI bv (not shown) and CPI are very similar each to the other as well to the original
data. The behaviour of interpolations along two lines are shown in Figure 4. In the
case of the top domain boundary only the CPI results do not correspond to the
exact ones because other CPI variants benefit from the additional information at the
boundary. The CPI behaviour along the middle line is the same as the CPI bv and
the CPI m is even slightly closer to the exact values than CPI, the LAG results are
the worst.

From the quantitative point of view the L2 error of the Lagrange projection
is higher by 38%, while both the CPI modifications outperforms the original by
13% (CPI bv) and by 11% (CPI m), respectively, see Table 1. The L∞ error is
for the considered interpolation methods similar. Nevertheless the disadvantage of
the CPI bv method is the violation of the conservation of the kinetic energy. This
happens due to the modification of the CPI solution1 at the positions related to
the boundary vertices contrary to the CPI m variant, where the matrix system is
modified rather than the individual values of interpolation result. Consequently
the CPI m provides a very precise kinetic energy conservation. Thus better choice
appears to be the CPI m than the CPI bv, the CPI interpolation performs also
reasonably well.

method max |F| Ekin L2 error L∞ error

exact 1.650 · 10−2 6.657 · 10−5 0 0
Lagrange int. 1.650 · 10−2 5.306 · 10−5 2.343 · 10−6 3.489 · 10−3

CPI 1.848 · 10−2 6.657 · 10−5 1.697 · 10−6 3.499 · 10−3

CPI bv 1.650 · 10−2 6.592 · 10−5 1.436 · 10−6 3.211 · 10−3

CPI m 1.650 · 10−2 6.657 · 10−5 1.520 · 10−6 3.221 · 10−3

Table 1: Comparison of interpolation results of the first test.

1The CPI interpolation preserves kinetic energy.
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Figure 3: Magnitude of the interpolated vector field on the structured FE mesh after
20 runs. The exact values are shown on the left, the result of the interpolation with
restrictions in the middle and the Lagrange interpolation on the right.

Figure 4: Left: Comparison of the interpolation of the first component of the velocity
along the top boundary given by y = 1.1, x ∈ 〈0, 1.1〉. Right: Comparison of the
second component of the velocity along line given by y = 0.5, x ∈ 〈0, 1.1〉.

4.2. Second interpolation test – question of interpolation domain

In the second test the interpolation results for different choices of interpolation
domain are compared using an additional assumption of the following correspondence
between the donor and the target mesh: The difference of the new target against
the original mesh is the coarsened middle part around a channel constriction, see
Figure 5, where the remaining parts of the target mesh are identical with the original
one. Such mesh coarsening is motivated by the usage of our in-house solver FSIfem
based on the ALE method (see [9]) in order to avoid deterioration of fluid mesh
quality during simulations involving (almost complete) channel closing. Since the
target domain of the ALE mapping can be chosen in the FSIfem solver we compare
CPI interpolation on the following choices of the interpolation subdomains of the
computational domain, see Fig. 5, with the aim to decrease interpolation error:

1. only the middle part of the constriction (CPI sel)

2. the whole domain, but with the coincident mesh vertices outside of the middle
part (CPI coi)

3. the whole domain (here slightly shifted mesh vertices are used) (CPI all).
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Figure 5: Meshes used in the second test together with initial and interpolated
velocity distributions. The donor (original) mesh is shown on left and the target
mesh on the right, only the middle part of both meshes differs and it is highlighted
by the red square.

Here, the considered velocity field, which is obtained by FSIfem as part of the FSI
solution, is once interpolated from the donor to the target mesh and vice versa.

Figure 6 illustrates the distribution of error after one pair of the interpolation
runs. The results of the interpolations CPI sel and CPI coi are very close, while the
error of CPI all is a little higher. Moreover the error of CPI all is distributed also
significantly in the area right from the channel constriction contrary to the CPI sel
and CPI coi results. The relative high interpolation error in the boundary layer is
caused by the coarse target mesh at the region. In the case with a similarly dense
target mesh the interpolation error can be expected to be significantly lower.

Interpolations obtained by CPI sel and CPI coi have similar L2 and L∞ errors, see
Table 2, however slightly smaller L2 error of CPI sel is redeemed by the inconsistency
in the maximal value and in the total kinetic energy. The CPI all presents the largest
L2 and L∞ errors.

method max |F| Ekin L2 error L∞ error

exact 1.142 · 102 9.644 · 10−2 0 0
Lagrange int. 1.141 · 102 9.580 · 10−2 9.914 · 10−5 3.512 · 101

CPI sel 1.184 · 102 9.646 · 10−2 9.086 · 10−5 3.369 · 101

CPI coi 1.145 · 102 9.644 · 10−2 9.838 · 10−5 3.498 · 101

CPI all 1.153 · 102 9.644 · 10−2 1.323 · 10−4 3.472 · 101

Table 2: Comparison of interpolation results of the second test.

5. Conclusion

The article presents the general concept of the interpolation between FEM meshes
based on paper [5]. The idea of the interpolation with restrictions is to improve the
commonly available interpolation procedure by a restriction of the conservation of
additional physical quantities. Such approach has the advantage of the relatively
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Figure 6: Distributions of relative error magnitudes after one pair of interpolations.
Results for CPI sel on the top, for CPI coi in the middle and error of the CPI all
interpolation on the bottom. The maximal error is located for all methods similarly
in a few elements inside boundary layer (out of color scale).

computationally cheap method which moreover respects physical nature of the prob-
lem. Here for the case of the fluid flow the conservation of the linear momenta, the
divergence and the kinetic energy is considered. Our implementation based on the
barycentric coordinates is described.

Two interpolation tests are performed in order to compare different modifications
of this method motivated by the different settings of the FSI solver based on the ALE
method. First, the different treatments of the nonzero boundary values are studied.
The interpolation results can be slightly improved by inclusion of the information
from the boundary into the resulting matrix system (variant CPI m). Second, the
interpolation error is calculated for different choices of the interpolation domain. The
best results are obtained for the interpolation in the whole domain where the mesh
distortion is highly localized around the channel constriction (variant CPI coi). The
interpolation of only the distorted part of the domain violates the conservation of
the total kinetic energy in the whole domain.
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Abstract: We present an improvement to the direct flux reconstruction
technique for equilibrated flux a posteriori error estimates for one-dimensional
problems. The verification of the suggested reconstruction is provided by nu-
merical experiments.
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1. Introduction

A posteriori error estimates play an important role in the numerical solution of
PDEs. They enable to provide the information about the discretization error for
the current choice of discretization parameters and also enable localization of the
sources of errors that can be exploited in possible adaptive strategies. For the survey
of main a posteriori techniques for PDE discretizations see e.g.[1], [3], [7], [12], [14]
and references cited therein.

Important class of approaches for deriving guaranteed a posteriori upper bounds
is based on the Hyper-circle theorem, see [11]. This theorem assumes the recon-
struction of the fluxes to be in H(div). Such a property can be gained by global
procedures that are very accurate but also very expensive, see e.g. [12]. Among the
local procedures, the local mixed finite element technique is very popular, since it
enables to reconstruct the fluxes based on local, relatively cheap problems. The the-
oretical results devoted to these mixed finite element reconstructions can be found
in [5] and [9]. The paper [15] presents even more simple, more direct and cheaper
reconstructions based on the natural degrees of freedom for the Raviart-Thomas
spaces inspired by [8], where a similar idea is applied to the discontinuous Galerkin
discretizations.

Although a posteriori error estimates based on the direct evaluation presented
in [15] are reliable and robust, their accuracy gets slightly worse in some situa-
tions, especially for even degree polynomial approximations. The reason behind this

DOI: 10.21136/panm.2022.27
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behavior may possibly come from a rather naive choice how to define the flux re-
constructions on the boundary of elements. Therefore, we present a suggestion for
an improvement of the definition of the flux reconstruction on the boundary of el-
ements for one-dimensional problems. Our suggestion is supported with numerical
experiments.

2. Continuous problem and its discretization

2.1. Continuous problem

Let Ω ⊂ Rd be a bounded polyhedral domain with Lipschitz continuous bound-
ary ∂Ω. Most of the presented results hold true in any dimension. Nevertheless, the
final result will be presented for one-dimensional problems only, i.e. d = 1. We use
standard notation for Lebesque and Sobolev spaces, respectively. Let us consider the
following boundary value problem: find u : Ω→ R such that

−∇ · (∇u− bu) = f in Ω, (1)

u = 0 in ∂Ω,

where f ∈ L2(Ω) and b ∈ W 1,∞(Ω)d such that ∇ · b = 0. Let us denote weak
derivative of u by u′ for d = 1.

Let (., .) and ‖.‖ be the L2(Ω) scalar product and norm, respectively.

Definition 1. We say that a function u ∈ H1
0 (Ω) is a weak solution of (1), if

(∇u− bu,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (2)

According to the Lax-Milgram lemma, there exists a unique solution of prob-
lem (2).

2.2. Discrete problem

We consider a space partition Th consisting of a finite number of closed, d-
dimensional simplices K with mutually disjoint interiors and covering Ω, i.e., Ω =
∪K∈ThK. We denote the edges (or faces) by e. In the rest of the paper we speak
about boundary objects of co-dimension 1 as about edges, but we mean vertices,
edges or faces depending on the dimension d. For each edge e, let n = ne denote
a unit normal vector to e with arbitrary but fixed direction for the inner edges and
with outer direction on ∂Ω. The unit outward normal to K will be denoted by nK .
We assume conforming properties of the mesh, i.e., neighbouring elements share an
entire edge. We set hK = diam(K) and h = maxKhK . We assume shape regu-
larity of elements, i.e., hK/ρK ≤ C for all K ∈ Th, where ρK is the radius of the
largest d-dimensional ball inscribed into K and constant C does not depend on Th
for h ∈ (0, h0). Moreover, we assume the local quasi-uniformity of the mesh, i.e. we
assume hK ≤ ChK′ for neighbouring elements K and K ′ and constant C does not
depend on Th for h ∈ (0, h0) again.
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In order to simplify the notation, we set (., .)M and ‖.‖M to be the local L2(M)-
scalar products and norms, respectively, where M ⊂ Ω is some union of elements K
or edges e. We denote a sum over all elements as

∑
K .

We define classical finite element space

Vh = {v ∈ H1
0 (Ω) : v|K ∈ P p(K)}, (3)

where the space P p(K) denotes the space of polynomials on K up to the degree p ≥ 1.
Although the functions from Vh are globally continuous, we will need to work

with piece-wise continuous functions as well. We define one-sided values, jumps and
mean values on the inner edges

v(x−) = lim
s→0+

v(x− ns), v(x+) = lim
s→0+

v(x+ ns),

[v](x) = v(x−)− v(x+), 〈v〉(x) =
1

2
(v(x−) + v(x+)). (4)

For the boundary edges we define

v(x−) = 〈v〉(x) = lim
s→0+

v(x− ns), [v](x) = 0. (5)

Finally, we define the finite element solution of problem (2).

Definition 2. We say that a function uh ∈ Vh is a discrete solution of (2), if

(∇uh − buh,∇vh) = (f, vh) ∀vh ∈ Vh. (6)

The existence and uniqueness of the discrete solution follows again from the Lax-
Milgram lemma.

2.3. Discontinuous Galerkin method

The justification of the presented result is based on the discontinuous Galerkin
method. Therefore, we briefly define the interior penalty discontinuous Galerkin
discretization of problem (2) using the same notation as in Section 2.2. In order
to simplify forthcoming considerations, we assume here purely diffusion problems,
i.e. b = 0, only. Then the interior penalty discontinuous Galerkin method reads: find
uh ∈ Xh such that∑

K

(∇uh,∇vh)K −
∑
e

(〈∇uh〉 · n, [vh])e + θ(〈∇vh〉 · n, [uh])e

+
∑
e

(α[uh], [vh])e = (f, vh) ∀vh ∈ Xh, (7)

where α > 0 is penalization parameter that should be chosen large enough to ensure
positivity of the resulting problem and the space Xh is defined as

Xh = {v ∈ L2(Ω) : v|K ∈ P p(K)}. (8)
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Parameter θ distinguishes different variants, where the most common variants are
symmetric (SIPG, θ = 1), nonsymmetric (NIPG, θ = −1) and incomplete (IIPG,
θ = 0). For more details about the discontinuous Galerkin method and its properties
see e.g. [6].

The same discretization can be denoted with the aid of the numerical fluxes
similarly as in the finite volume method. Then the general discontinuous Galerkin
discretization can be expressed as∑

K

(∇uh,∇vh)K − (σ̂ · nK , vh)∂K + (û− uh,∇vh · nK)∂K = (f, vh) ∀vh ∈ Xh, (9)

where the numerical fluxes σ̂ and û approximate ∇uh and uh on the edges, respec-
tively. For example, the choice for the numerical fluxes corresponding to IIPG is

û = uh, σ̂ = 〈∇uh〉 − α[uh]n. (10)

The connection between the primal discontinuous Galerkin formulations and the
formulations with the numerical fluxes is described in [2].

3. A posteriori error bound

3.1. Flux reconstruction

Since the discretization by the finite element method is conforming, the exact so-
lution u as well as the discrete solution uh belong to common space H1

0 (Ω). This qual-
ity no longer holds for the flux of the solution σ(u) = ∇u−bu, since σ(u) ∈ H(div,Ω)
and σ(uh) /∈ H(div,Ω) in general. Our aim is to find a suitable reconstruction
σh = σh(uh) ∈ H(div,Ω) such that σh ≈ σ(uh).

Let RTp(K) be the local Raviart-Thomas space of order p for element K ∈ Th,
i.e. RTp(K) = Pp(K)d + xPp(K). For the details about Raviar-Thomas spaces and
about FEM-like spaces for approximation H(div,Ω) in general see e.g. [4]. We define
the reconstruction σh element-wise. We seek σh|K ∈ RTp(K) such that

σh|e · n = φe ∀e ⊂ K,

(σh, zh)K = (∇uh − buh, zh)K ∀zh ∈ Pp−1(K)d, (11)

where φe ∈ Pp(e) is a suitable function. The conditions in (11) represent the natural
degrees of freedom for RTp(K), see [4, Proposition 2.3.4]. Applying the basis cor-
responding to these degrees of freedom enables to assemble σh directly without the
necessity to solve any local linear problems which results in extremely cheap eval-
uation of the reconstruction σh. This property is demonstrated in [15, Lemma 5.1]
for d = 1.

We point out that the resulting function σh has globally continuous normal com-
ponents and therefore the sum of local contributions of σh is globally in H(div,Ω).
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Important property of σh is the orthogonality of f +∇ · σh to functions from Vh
that follows from the discrete problem formulation (6) and from (11)

(f +∇ · σh, vh) =(f, vh)− (σh,∇vh)

=(f, vh)− (∇uh − buh,∇vh) = 0 ∀vh ∈ Vh. (12)

3.2. Upper bound

We define the error measure as the dual norm of residual

Err(w) = sup
06=v∈H1

0 (Ω)

(f, v)− (∇w − bw,∇v)

‖∇v‖
. (13)

For the most simple case b = 0, the error measure is equivalent to H1-seminorm, i.e.
Err(w) = ‖∇u−∇w‖.

An upper bound to the error measure Err(uh) can be derived similarly as in [15].
Here, we present the final result.

Theorem 1. Let uh ∈ Vh be the discrete solution obtained by (6) and σh be the
reconstruction obtained from uh by (11). Then

Err(uh)2 ≤ η2 =
∑
K

(ηR,K + ηF,K)2, (14)

where the local error estimators are

ηR,K = CPhK‖f +∇ · σh‖K ,
ηF,K = ‖σh − σ(uh)‖K = ‖σh −∇uh + buh‖K . (15)

The constant CP is the Poincare constant and can be bounded by CP ≤ 1/π,
cf. [10]. It shall be pointed out that all the terms in (14) are cheaply computable.

3.3. Choice of φe

A posteriori error estimate (14) holds regardless of the choice of φe in (11). On
the other hand, the quality of the estimate (14), i.e. how much the estimator η
overestimates the error Err(uh), depends on the choice of φe.

The paper [15] discusses the most naive possibility φe = 〈∇uh〉 ·n and the numer-
ical experiments provided in the paper [15] show that this choice is far from optimal
in some cases, most importantly for even degree polynomial approximations.

The goal of this paper is to show a suggestion for some more accurate choice of φe.
Since we will only consider one-dimensional problems, we may simplify the domain Ω
as the interval (0, 1) and we can denote the partition nodes 0 = e0 < e1 < . . . <
eN = 1 and the corresponding elements Kk = [ek−1, ek]. Then the suggested choice
for φe is following

φeN = −(f, x)− (buh, 1) = −
∫ 1

0

xf(x) + b(x)uh(x)dx,

φek = φek+1
+ (f, 1)Kk+1

, k = N − 1, . . . , 0. (16)
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The idea of element-wise flux reconstruction similar to (11) was already applied
with success for the interior penalty discontinuous Galerkin a posteriori error esti-
mates, see e.g. [8]. It is possible to find out by careful comparison that the choice
for boundary degrees of freedom φe in [8] corresponds to the numerical fluxes σ̂, cf.
Section 2.3.

Our idea for the choice (16) follows from imitating the discontinuous Galerkin
technique, where the finite element method is expressed as a variant of the discon-
tinuous Galerkin method. More precisely, we modify the IIPG numerical flux σ̂
from (10) in such a way that the resulting IIPG solution with this modified flux is
identical to the finite element solution.

Still, there is a work to be done concerning precise numerical analysis, e.g. IIPG
error norm justification or IIPG a posteriori error analysis including efficiency anal-
ysis.

4. Numerical experiments

The aim of this section is to show how accurate, reliable and robust are a posteriori
error estimates based on (11) and (16). The numerical experiments in paper [15],
where the naive choice of φe as φe = 〈∇uh〉 · n is discussed, show that the estimates
are slightly worse in some situations, especially for even polynomial degrees. We
want to show that the choice of φe according to (16) improves this behavior and the
resulting estimates are accurate regardless of the situation.

Although the individual error estimator can be computed directly, the evaluation
of the error measure can be difficult even in simplified situations, where the exact
solution is known, since the defining formula (13) represents the supremum over
infinite-dimensional space. Therefore, we approximate the error measure Err(w) by

Err+(w) = sup
06=v∈V +

h

(f, v)− (∇w − bw,∇v)

‖∇v‖
, (17)

where V +
h is chosen adaptively and Vh ⊂ V +

h ⊂ H1
0 (Ω). The error measure simplifies

to Err(w) = ‖∇u−∇w‖ for purely diffusion problems (b = 0) and no approximation
of the error measure is needed in these situations.

4.1. Purely diffusion problem

We study the error estimate (14) with respect to the mesh refinement and with
respect to the changing polynomial degree. We assume the purely diffusion problem
(b = 0) on the domain Ω = (0, 1) and we set the right-hand side f = π2 sin(πx).

Since the paper [15] shows that there are two different regimes for odd and even
polynomial degrees, we provide the tests with equidistant meshes for refining mesh-
size h starting at h = 1 and fixed polynomial degrees p = 2 and p = 3.

We set fixed h = 0.25 for the changing polynomial degree tests.
Tables 1–3 show that the estimate (14) provides extremely accurate upper bounds.

The estimator ηR converges faster to 0 than the error and the second estimator ηF
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1/h ‖u′ − u′h‖ η Eff ηR ηF
1 2.6718− 1 3.1054− 1 1.16 5.4235− 2 2.5631− 1
2 1.9719− 1 2.0686− 1 1.05 1.3166− 2 1.9369− 1
4 5.0620− 2 5.1238− 2 1.01 8.4125− 4 5.0396− 2
8 1.2739− 2 1.2778− 2 1.00 5.2868− 5 1.2724− 2
16 3.1900− 3 3.1924− 3 1.00 3.3088− 6 3.1891− 3
32 7.9783− 4 7.9787− 4 1.00 2.0687− 7 7.9777− 4
64 1.9948− 4 1.9949− 4 1.00 1.2930− 8 1.9947− 4

Table 1: Global h-performance, diffusion, p = 2

1/h ‖u′ − u′h‖ η Eff ηR ηF
1 2.6718− 1 3.1054− 1 1.16 5.4235− 2 2.5631− 1
2 2.6332− 2 2.7382− 2 1.04 1.3086− 3 2.6073− 2
4 3.3650− 3 3.3984− 3 1.01 4.1667− 5 3.3567− 3
8 4.2295− 4 4.2400− 4 1.00 1.3082− 6 4.2269− 4
16 5.2941− 5 5.2974− 8 1.00 4.0928− 8 5.2933− 5
32 6.6199− 6 6.6211− 6 1.00 1.4696− 9 6.6197− 6
64 8.2751− 7 8.2778− 7 1.00 3.3135− 10 8.2756− 7

Table 2: Global h-performance, diffusion, p = 3

as expected. On the other hand, the results show that the estimator ηF is not able
to provide upper bound without the correction from the estimator ηR. Moreover,
Tables 1–3 show that there is no longer any significant difference between odd and
even polynomial degrees, compare with [15].

4.2. Convection-diffusion problem

We study convection-diffusion equation

−εu′′ + bu′ = f, (18)

where Ω = (0, 1), b = 1, f = 1 and ε > 0 is a constant. For more information
about convection-diffusion problems see [13]. We present the performance of the
estimate (14) with respect to h for fixed ε = 0.01, p = 1 and successively refined
equidistant meshes starting with h = 0.1 and with respect to ε for the fixed equidis-
tant mesh with h = 0.025 and decreasing parameter ε.

Tables 4 and 5 show that the accuracy of the estimate is preserved either for
convection or diffusion dominated situation and the estimate is accurate and robust
with respect to h as well as ε.

Moreover, it is possible to study the local distribution of errors and corresponding
estimates. Figure 1 presents the exact solution u and the discrete solution uh for the
convection dominated situation on the equidistant mesh with h = 0.1 and ε = 0.01.
The corresponding distribution of estimates is presented in Figure 2. We can find
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p ‖u′ − u′h‖ η Eff ηR ηF
1 4.9851− 1 5.0603− 1 1.02 1.2655− 2 4.9338− 1
2 5.0620− 2 5.1238− 2 1.01 8.4125− 4 5.0396− 2
3 3.3650− 3 3.3984− 3 1.01 4.1667− 5 3.3567− 3
4 1.6667− 4 1.6806− 4 1.01 1.6459− 6 1.6641− 4
5 6.5836− 6 6.6304− 6 1.01 5.3935− 8 6.5765− 6
6 2.1766− 7 2.1911− 7 1.01 4.2163− 9 2.1617− 7

Table 3: Global p-performance, diffusion, h = 0.25

1/h Err+(uh) η Eff
10 2.0665− 1 2.0770− 1 1.01
20 1.0155− 1 1.0206− 1 1.01
40 5.0775− 2 5.1031− 2 1.01
80 2.5388− 2 2.5516− 2 1.01
160 1.2694− 2 1.2758− 2 1.01

Table 4: Global h-performance, convection-diffusion, ε = 0.01

ε Err+(uh) η Eff
1.0− 0 7.4691− 3 7.5067− 3 1.01
1.0− 1 1.6057− 2 1.6138− 2 1.01
1.0− 2 5.0775− 2 5.1031− 2 1.00
1.0− 3 1.6159− 1 1.6164− 1 1.00
1.0− 4 9.1726− 1 9.1727− 1 1.00

Table 5: Global ε-performance, convection-diffusion, h = 0.025

Figure 1: Exact and discrete solution Figure 2: Element-wise error estimates

out comparing Figures 1 and 2 that the distribution of the error matches very well
with the distribution of the local error estimates.
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5. Conclusion

We suggested an improvement of the flux reconstruction for a posteriori error es-
timates from [15] for one-dimensional problems and provided numerical experiments
verifying the accuracy, robustness and reliability of the suggested reconstruction.
The main drawback lies in the fact that it is not obvious how to extend presented
result to multi-dimensional problems. Moreover, precise analysis is still missing as
well. These topics will be part of the future research.
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Simona Bérešová, Simona.Beresova@ugn.cas.cz
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Dana Černá, dana.cerna@tul.cz

Katedra matematiky a didaktiky matematiky, Fakulta př́ırodovědně-humanitńı
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Jitka Machalová, jitka.machalova@upol.cz
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Matematický ústav AV ČR, v. v. i., Praha
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